Forthcoming Events

16.12.2021 - 21.12.2021, Honolulu, Hawaii, USA
01.06.2022 - 30.06.2022, Grindelwald, Switzerland
27.06.2022 - 29.06.2022, University College London, UK

News

NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker
Four new scientific highlights- by MUST PIs Chergui / Milne / Beaud / Staub, by Wolf / Röthlisberger, by Wörner, and Keller
Photon Science Roadmap- for Research Infrastructures 2025-2028 by the Swiss Photon Community
Proof of concept ERC Grant for Ursula Keller Dual-comb laser driven terahertz spectrometer for industrial sensing (DC-THz)
Majed Chergui - elected to the European Academy of Sciences
Ruth Signorell - elected to the European Academy of Sciences
Farewell and Welcome!Chris Milne leaves for the European XFEL, Camila Bacellar takes over
SY-GAIA expedition - measures aerosols in the North-Atlantic

Christoph Hauri and co-workers: Magnetization Controlled at Picosecond Intervals

August 11, 2013

Magnetisation controlled at picosecond intervals


A terahertz laser developed at the Paul Scherrer Institute makes it possible to control a material’s magnetisation at a timescale of picoseconds (0.000 000 000 001 seconds). In their experiment, the researchers shone extremely short light pulses from the laser onto a magnetic material, where the magnetic moments – “elementary magnets” – were all aligned in parallel. The light pulse’s magnetic field was able to deflect the magnetic moments from their idle state in such a way that they exactly followed the change of the laser’s magnetic field with only a minor delay. The terahertz laser used in the experiment is one of the strongest of its kind in the world. One special feature is the fact that it is phase-stable, which enables the exact change in the electrical and magnetic field within the individual pulses to be defined reliably for each laser pulse. As the majority of data is stored magnetically these days, the possibility to quickly change a material’s magnetisation is crucial for new, rapid storage systems. The researchers report on their results in the journal Nature Photonics.

Publication: Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. C. Vicario, C. Ruchert, F. Ardana-Lamas, P. M. Derlet, B. Tudu, J. Luning & C. P. Hauri (2013) Nature Photonics, doi:10.1038/nphoton.2013.209



Figure: A pulse from a terahertz laser (blue) controls the magnetisation of a material: the magnetisation (red - determined via the magneto-optic Kerr effect MOKE) follows the laser pulse’s magnetic field with a slight delay. The black curve shows the prediction of a computer simulation.

News items in:
Science Daily: Magnetization Controlled at Picosecond Intervals
Krone (Austria, in German): Forscher arbeiten an blitzschnellen Festplatten
$Sch8ieh0ncp0e@v(ORp6Fh (Austrian television, in German): Material blitzschnell magnetisiert
Pro-Physik.de (in German): Im Pikosekundentakt magnetisieren
Science World report: Experiments With Strongest Terahertz Laser Yield Ultrafast Magnetization Milestone


<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF