Forthcoming Events

11.07.2022 - 15.07.2022, Celeste Hotel, on UCF main campus, Orlando, Florida
05.09.2022 - 09.09.2022, Iseolago hotel, Iseo, Italy.

News

MUST2022 Conference- succesfully concluded
New scientific highlights- by MUST PIs Chergui and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker

Nonlinear electron-phonon coupling in doped manganites

June 15, 2017

A new route to manipulate the electronic properties of a material via vibrational excitation

The control of material properties using ultrashort pulses of light is a promising route for the development of future electro-optical storage and high speed switching devices. One very fruitful approach is to use low energy excitations in the mid-infrared spectral range to realize the targeted changes [1,2]. The selectivity of the process minimizes the entropy added to the system as compared to the excitation of electronic transitions in the ultraviolet to near-infrared wavelengths range. In particular, the transient enhancement of superconductivity initiated via nonlinear phonon-phonon interactions is a nice example that has recently received large attention [3].
In this work, we report of a new route to manipulate the electronic properties of a material via vibrational excitation. Investigating the dynamics of the charge order in a manganites film following resonant excitation of a phonon mode to large amplitude, we find direct nonlinear coupling between the excited mode and the electronic degrees of freedom. In particular our work demonstrates that the nonlinear electron-phonon coupling is sufficiently strong to drive the insulator-metal transition in this material. The generalization of our approach leads to new ways of manipulating materials e.g. shaping their properties on ultrashort timescales.

[1] M. Rini, M. et al. Nature 449, 72–74 (2007)
[2] T. Kubacka, et al. Science 343, 1333–1336 (2014)
[3] R. Mankowsky, et al. Nature 516, 71–73 (2014)


Reference: V. Esposito, R. Mankowsky, M. Fechner, H. Lemke, M. Chollet, J. M. Glownia, M. Nakamura, M. Kawasaki, Y. Tokura, U. Staub, P. Beaud, and M. Först, Nonlinear electron-phonon coupling in doped manganites, Phys. Rev. Lett. 118, 247601 (2017). (10.1103/PhysRevLett.118.247601) Esposito-2017

<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF