Forthcoming Events

23.01.2019 - 25.01.2019, DESY-Hamburg and European XFEL, Schenefeld, Germany
09.02.2019 - 13.02.2019, Banff Centre, Alberta, Canada

News

New scientific highlights- by MUST PIs Majed Chergui and Steve Johnson
The FP-RESOMUS Grant Agreement- now signed by the ETH Zürich and the European Commission
Cluster of Excellence RESOLV extended- our partner in FP-RESOMUS and the biannual Science and Gender Meetings
Kontext - A radio broadcast with Ursula Keller and Aline Rickli - on leadership positions for women in science (in German)
Nobel Prize in Physics 2018 for groundbreaking inventions: intense ultrafast laser pulses and optical tweezers
Ambizione grant awarded to Elsa Abreu- in Steve Johnson's group
Fabrizio Carbone promoted Associate Professor of Physics- in the EPFL School of Basic Sciences from 1st of August
New scientific highlights- by MUST PIs Ursula Keller, Gebhard Schertler / Jörg Standfuss, Majed Chergui, Peter Hamm
White Paper Photonics Switzerland- presented June 20, 2018 at the Swissmem "Industrietag"

Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source

January 17, 2017

The mystery of ultrafast reactions

As reported by researchers from the biophotonics group led by Professor Jean-Pierre Wolf in Geneva and the ultrafast spectroscopy group led by Professor Hans Jakob Wörner in Zurich in the latest edition of the journal Science, they have refined an X-ray-based measuring technology, known as X-ray absorption spectroscopy, to achieve a time resolution of 20 femtoseconds (2 x 10-14 s). This has allowed the scientists to observe how structural changes take place in the space occupied by the electrons – the molecular orbitals – of two highly fluorinated compounds. The molecules themselves – carbon tetrafluoride (which contains four fluorine atoms) and sulphur hexafluoride (which contains six fluorine atoms) – also adopted a different shape as the chemical bonds broke due to the movement of the electrons. For example, carbon tetrafluoride spontaneously lost a fluorine atom after being ionized and transformed from a tetrahedron into a flat, triangular carbon molecule with three fluorine atoms. This method allows element-specific measurement of carbon-containing molecules and their reactions, which are relevant to ozone depletion in the atmosphere.


Figure 2. Transient-absorption spectroscopy at the carbon K-edge. (A) An intense near-infrared pulse induces single ionization of CF4 to CF4+ which is unstable in its electronic ground state and dissociates into CF3+ + F. The sequence of geometries is taken from a calculated minimum-energy reaction path (see text for details). (B) Absorbance A(t) = ln[I0/I(t)] as a function of the SXR-NIR time delay. Negative time delays correspond to the SXR pulse preceding the NIR pulse. The intensity axis, as well as the color scale, are linear. The standard deviation of this data set amounts to 4%. The calculated stick spectrum in the inset has been shifted by -2.5 eV. (C) Orbital diagram illustrating selected transitions, as obtained from TDDFT/LB94 calculations.

News sites reporting on the publication: Also see the UniGE Presse Release (48 KB) with a link to the movie.

Reference: Pertot, Y., C. Schmidt, M. Matthews, A. Chauvet, M. Huppert, V. Svoboda, A. von Conta, A. Tehlar, D. Baykusheva, J.-P. Wolf and H. J. Wörner (2017). Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source. Science. (10.1126/science.aah6114) Pertot-2017 (1.13 MB)

<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF