Forthcoming Events

16.12.2021 - 21.12.2021, Honolulu, Hawaii, USA
01.06.2022 - 30.06.2022, Grindelwald, Switzerland
27.06.2022 - 29.06.2022, University College London, UK

News

Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker
Four new scientific highlights- by MUST PIs Chergui / Milne / Beaud / Staub, by Wolf / Röthlisberger, by Wörner, and Keller
Photon Science Roadmap- for Research Infrastructures 2025-2028 by the Swiss Photon Community
Proof of concept ERC Grant for Ursula Keller Dual-comb laser driven terahertz spectrometer for industrial sensing (DC-THz)
Majed Chergui - elected to the European Academy of Sciences
Ruth Signorell - elected to the European Academy of Sciences
Farewell and Welcome!Chris Milne leaves for the European XFEL, Camila Bacellar takes over

Creating new states of matter in complex materials

January 21, 2019

Terahertz-driven phonon upconversion in SrTiO3

Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements.


Figure: a, Strong terahertz radiation (red) interacts with the STO soft-mode phonon (yellow). The degree of resonant overlap can be tuned by temperature. Energy is exchanged with higher-frequency phonon modes (turquoise, purple) through nonlinear coupling. The STO unit cell and two lowest-frequency zone-centre TO eigenmodes are indicated at the top of the figure. b, Phonon motion is probed in the time domain with ultrafast XRD in reflection geometry.

See also:

Reference: Kozina, M., M. Fechner, P. Marsik, T. van Driel, J. M. Glownia, C. Bernhard, M. Radovic, D. Zhu, S. Bonetti, U. Staub and M. C. Hoffmann (2019). Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. (10.1038/s41567-018-0408-1) Kozina-2019
 


<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF