Forthcoming Events

23.01.2019 - 25.01.2019, DESY-Hamburg and European XFEL, Schenefeld, Germany
09.02.2019 - 13.02.2019, Banff Centre, Alberta, Canada


New scientific highlights- by MUST PIs Majed Chergui and Steve Johnson
The FP-RESOMUS Grant Agreement- now signed by the ETH Zürich and the European Commission
Cluster of Excellence RESOLV extended- our partner in FP-RESOMUS and the biannual Science and Gender Meetings
Kontext - A radio broadcast with Ursula Keller and Aline Rickli - on leadership positions for women in science (in German)
Nobel Prize in Physics 2018 for groundbreaking inventions: intense ultrafast laser pulses and optical tweezers
Ambizione grant awarded to Elsa Abreu- in Steve Johnson's group
Fabrizio Carbone promoted Associate Professor of Physics- in the EPFL School of Basic Sciences from 1st of August
New scientific highlights- by MUST PIs Ursula Keller, Gebhard Schertler / Jörg Standfuss, Majed Chergui, Peter Hamm
White Paper Photonics Switzerland- presented June 20, 2018 at the Swissmem "Industrietag"

Majed Chergui and co-workers: An ultraviolet analogue of 2D NMR

February 15, 2013

Unravelling electron and energy transfer processes of amino-acid residues in bio-systems

The past twenty years have witnessed a significant effort aimed at pushing the methods of multidimensional NMR spectroscopies from the radiofrequency domain into the optical domain, first in the infrared (vibrational multidimensional spectroscopy) and around the mid-2000’s in the visible range (electronic multidimensional spectroscopy), with the advantage of probing couplings between vibrational or electronic dipoles (chromophores) in biological systems that are orders of magnitude stronger than in NMR, while achieving a much higher time resolution of sub-picoseconds.
Pushing 2D spectroscopy further into the UV below 300 nm brings the additional advantage of accessing the absorption region of amino acid residues and nucleic acids. However, because of their large (30-50 nm) absorption band widths, 2D UV spectroscopy has remained a challenge. Recently, the group of Prof. Chergui has implemented the first experimental set-up for 2D UV spectroscopy and in a recent article in Science, they demonstrated its capabilities in the case of heme proteins. Indeed, in addition to disentangling the broad overlapping spectral contributions of three chromophores (the heme and the two tryptophan residues), they identified electron-transfer processes between one of the tryptophans and the heme. So far, it was always assumed that the tryptophan fluorescence is quenched by an energy transfer (so-called FRET) to the heme. These results question the systematic use of FRET to interpret the decay of the Trp fluorescence in biological systems, and therefore its general role as a “spectroscopic ruler”. On a broader perspective, the ability of 2D UV spectroscopy to detect couplings between chromophores in biosystems, offers a new tool to study protein-target interactions.


  1. G. Auböck, C. Consani, F. van Mourik and M. Chergui (2012) Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. Opt. Lett., 37, 2337 (2012)
  2. C. Consani, G. Auböck, F. van Mourik and M. Chergui (2013) Ultrafast tryptophan-to-haem electron transfer in myoglobins: a two-dimensional UV spectroscopy study. Science (DOI: 10.1126/science.1230758).
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation