News

Photon Science Roadmap- for Research Infrastructures 2025-2028 by the Swiss Photon Community
Majed Chergui - elected to the European Academy of Sciences
Ruth Signorell - elected to the European Academy of Sciences
Proof of concept ERC Grant for Ursula Keller Dual-comb laser driven terahertz spectrometer for industrial sensing (DC-THz)
Farewell and Welcome!Chris Milne leaves for the European XFEL, Camila Bacellar takes over
SY-GAIA expedition - measures aerosols in the North-Atlantic
Synergy grants for MUST-AssociatesSylvie Roke (EPFL) and Gebhard Schertler (PSI/ETH).
Promotion to Associate Professor of Photonicscongratulations to Rachel Grange!
First light in the SwissFEL Maloja endstation- on track for first experiments in 2021
New scientific highlights- by MUST PIs Chergui, Milne, Wörner, Vaníček and Röthlisberger

Catching proteins in the act

August 22, 2016

Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography


Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.


Figure. In side view (a) and perpendicular to the membrane (b). The retinal is shown as yellow sticks and the Lys216 side chain covalently binding retinal as blue sticks. Continuous 2FoFc electron density map around retinal and lysine is shown in magenta. Helices A–G are defined based on the header of pdb entry 1QHJ.

Reference: Nogly, P., V. Panneels, G. Nelson, C. Gati, T. Kimura, C. Milne, D. Milathianaki, M. Kubo, W. Wu, C. Conrad, J. Coe, R. Bean, Y. Zhao, P. Båth, R. Dods, R. Harimoorthy, K. R. Beyerlein, J. Rheinberger, D. James, D. DePonte, C. Li, L. Sala, G. J. Williams, M. S. Hunter, J. E. Koglin, P. Berntsen, E. Nango, S. Iwata, H. N. Chapman, P. Fromme, M. Frank, R. Abela, S. Boutet, A. Barty, T. A. White, U. Weierstall, J. Spence, R. Neutze, G. Schertler and J. Standfuss (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Commun. 7: 12314. 10.1038/ncomms12314 Nogly-2016 (1.87 MB).

Also see the the ScienceDaily article


<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF