Forthcoming Events

11.07.2022 - 15.07.2022, Celeste Hotel, on UCF main campus, Orlando, Florida
05.09.2022 - 09.09.2022, Iseolago hotel, Iseo, Italy.

News

MUST2022 Conference- succesfully concluded
New scientific highlights- by MUST PIs Chergui and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker

Chiral control of spin-crossover dynamics in Fe(II) complexes

May 26, 2022

(Published in Nature Chemistry)
Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other and non-superposable – much like a pair of hands. While they share most chemical and physical properties, enantiomers can have adverse effects in (bio)chemical phenomena. For example, a protein or enzyme may only bind one enantiomeric form of a target molecule. Consequently, identification and control of chirality is often key to designing (bio)chemical compounds, e.g. in the food, fragrance, and pharmaceutical industries.

A most common technique for detecting chirality is called circular dichroism, which measures how chiral samples absorb left- and right-circularly polarized light differently to directly identify pairs of enantiomers. Circular dichroism can also help resolve the conformation of a molecule through its chiral response – a feature that has made it a popular analytical tool in (bio)chemical sciences.

However, circular dichroism has so far been limited in time-resolution and spectral range. Researchers led by Malte Oppermann in the group of Majed Chergui at EPFL, have now developed a new time-resolved instrument that measures circular dichroism changes in fractions of a picosecond (one trillionth of a second), meaning that it can “take” ultrafast snapshots of a molecule’s chirality throughout its (bio)chemical activity. This makes it possible to capture the chirality of photoexcited molecules and to resolve the conformational motion that drives the conversion of the absorbed light energy.

In a collaboration with the group of Jérôme Lacour at the University of Geneva and Francesco Zinna at the University of Pisa, the researchers used the new method to investigate the magnetic-switching dynamics of so-called “iron-based spin-crossover complexes” – an important class of metallo-organic molecules with promising applications in magnetic data storage and processing devices. After decades of research, the deactivation mechanism of their magnetic state has remained unresolved, despite its importance for magnetic data storage.

Carrying out a time-resolved circular dichroism experiment, the researchers discovered that the loss of magnetization is driven by a twisting of the molecule’s structure that distorts its chiral symmetry. Remarkably, the team was also able to slow down the decay of the magnetic state by suppressing the twisting motion in modified complexes.

“These ground-breaking experiments show that time-resolved circular dichroism is uniquely suited to capture the molecular motion that drives many (bio)chemical processes,” says Malte Oppermann. “This offers a new way for investigating challenging dynamic phenomena – for example the ultrafast rotations of synthetic molecular motors, and the conformational changes of proteins and enzymes in their native liquid environment.”

Reference: Oppermann, M., Zinna, F., Lacour, J., and Chergui, M. (2022) Chiral control of spin-crossover dynamics in Fe(II) complexes. Nature Chem. (10.1038/s41557-022-00933-0).

See also: EPFL news, SciTechDaily, PhysOrg,
<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF