Forthcoming Events

11.07.2022 - 15.07.2022, Celeste Hotel, on UCF main campus, Orlando, Florida
05.09.2022 - 09.09.2022, Iseolago hotel, Iseo, Italy.


MUST2022 Conference- succesfully concluded
New scientific highlights- by MUST PIs Chergui and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker

Mahan excitons in room-temperature methylammonium lead bromide perovskites

February 13, 2020

The optical properties of semiconductors are governed by the so-called “excitons”, which are bound pairs of negative electrons and positive holes. Excitons are important because they transport energy (with no net charge) across materials and thus they play a crucial role in a number of optoelectronic devices. The ability to control the excitonic properties of semiconductors (by tuning parameters such as temperature, pressure, charge density, electric and magnetic fields) is key to broadening the range and diversity of applications. In particular, when the density of charge carriers (electrons and holes) increases, excitons tend to melt and a semiconductor eventually turns into a metal at the so-called Mott density.

However, back in 1967, Gerald Mahan predicted that a different type of exciton can still persist above the Mott density. Despite years of research, this so-called Mahan exciton has not been observed, let alone under the normal operating conditions of devices.

This has now just been achieved by the group of Majed Chergui at EPFL, in collaboration with Alexander Steinhoff (University of Bremen), Ana Akrap (University of Fribourg), and the group of László Forró (EPFL). Publishing in Nature Communications, the teams uncovered signatures of Mahan excitons in the very popular lead-bromide organic-inorganic perovskite. The researchers mapped how the material’s optical properties modify at increasing densities of charge carriers with a temporal resolution of tens of femtoseconds (one femtosecond is one millionth of a billionth of a second). Mahan excitons emerged in the optical properties with the distinctive features predicted by theory.

Figure 1. Illustration of the Mahan exciton forming in the dense electron-hole plasma upon photoexcitation of the hybrid perovskite. Credit: Tania Palmieri.

What is remarkable is that this quasiparticle has now been observed in a lead-halide perovskite, a cheap and abundant semiconductor that is intensely investigated for applications such as photovoltaics, luminescent materials, and lasers. The latter two applications strongly rely on high densities of charge carriers. Furthermore, on the fundamental side, these findings deepen our knowledge of many-body phenomena in condensed matter systems, paving the route toward the use of perovskites for the Bose-Einstein condensation of hybrid states of light and excitons.

See also: EPFL News, PhysOrg,

Reference: Palmieri, T., Baldini, E., Steinhoff, A., Akrap, A., Kollár, M., Horváth, E., Forró, L., Jahnke, F., and Chergui, M. (2020). Mahan excitons in room-temperature methylammonium lead bromide perovskites. Nat Commun 11. (10.1038/s41467-020-14683-5)

NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation