Peter Hamm and co-workers: time-resolved terahertz spectroscopy captures the early stages of the photodetached electron and furthermore provides a direct measure of its initial size

July 6, 2014

Direct Observation of the Collapse of the Delocalized Excess Electron in Water


It is generally assumed that the hydrated electron occupies a quasi-spherical cavity surrounded by only a few water molecules in its equilibrated state. However, in the very moment of its generation, before water has had time to respond to the extra charge, it is expected to be significantly larger in size. According to a particle-in-a-box picture, the frequency of its absorption spectrum is a sensitive measure of the initial size of the electronic wavefunction. Here, using transient terahertz spectroscopy, we show that the excess electron initially absorbs in the far-infrared at a frequency for which accompanying ab initio molecular dynamics simulations estimate an initial delocalization length of ≈40 Å. The electron subsequently shrinks due to solvation and thereby leaves the terahertz observation window very quickly, within ≈200 fs.

Publication: J. Savolainen, F. Uhlig, S. Ahmed, P. Hamm and P. Jungwirth (2014) Direct Observation of the Collapse of the Delocalized Excess Electron in Water, Nature Chem 6, 697-701 (10.1038/nchem.1995)



back <<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation
FNSNF