Forthcoming Events

16.12.2021 - 21.12.2021, Honolulu, Hawaii, USA
01.06.2022 - 30.06.2022, Grindelwald, Switzerland
27.06.2022 - 29.06.2022, University College London, UK


Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker
Four new scientific highlights- by MUST PIs Chergui / Milne / Beaud / Staub, by Wolf / Röthlisberger, by Wörner, and Keller
Photon Science Roadmap- for Research Infrastructures 2025-2028 by the Swiss Photon Community
Proof of concept ERC Grant for Ursula Keller Dual-comb laser driven terahertz spectrometer for industrial sensing (DC-THz)
Majed Chergui - elected to the European Academy of Sciences
Ruth Signorell - elected to the European Academy of Sciences
Farewell and Welcome!Chris Milne leaves for the European XFEL, Camila Bacellar takes over

Solvated electrons in neutral water cluster

August 5, 2019

Relaxation Dynamics and Genuine Properties of the Solvated Electron in Neutral Water Clusters

ABSTRACT: We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron
scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for
isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55−3.85 eV and a genuine anisotropy parameter in the range of 0.51−0.66 for the ground-state hydrated electron. All of these
observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.

Reference: Thomas E. Gartmann, Loren Ban, Bruce L. Yoder, Sebastian Hartweg, Egor Chasovskikh, and Ruth Signorell, Relaxation Dynamics and Genuine Properties of the Solvated Electron in Neutral Water Clusters,
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation