Competitive reaction pathways in vibrationally induced photodissociation of $\text{H}_2\text{SO}_4$†

Juvenal Yosa Reyes,‡ Tibor Nagy‡§ and Markus Meuwly*

Vibrationally induced photodissociation of sulfuric acid into $\text{H}_2\text{O} + \text{SO}_3$ is investigated based on reactive molecular dynamics (MD) simulations. Multisurface adiabatic reactive MD simulations allow us to follow both, H-transfer and water elimination after excitation of the $\nu_9$ OH-stretching mode. Analysis of several thousand trajectories finds that the $\text{H}_2\text{O}$ and $\text{SO}_3$ fragments have distinct final state distributions with respect to translational, rotational, and vibrational degrees of freedom. Rotational distributions peak at quantum numbers $j \leq 5$ for water and $j \approx 60$ for $\text{SO}_3$. The final state distributions should be useful in identifying products in forthcoming experiments. Based on the MD trajectories, a kinetic scheme has been developed which is able to explain most of the trajectory data and suggests that IVR is very rapid. Typical lifetimes of the excited complex range from several 10 picoseconds to hundreds of nanoseconds, depending on the excitation level. Including temperature and pressure profiles characteristic for the stratosphere in the kinetic model shows that excitations higher than $\nu_9 = 4$ can significantly contribute to the photolysis rate. This extends and specifies earlier work in that multi-level modeling is required to understand the significance of vibrationally induced decomposition pathways of sulfuric acid in the middle atmosphere.

1 Introduction

The chemistry of sulfur-containing compounds is of great importance in atmospheric sciences. Sulfur is mainly emitted in the form of dimethyl sulfide (DMS)\textsuperscript{1–3} and sulfur dioxide (SO\textsubscript{2})\textsuperscript{4,5}. One of the main intermediates formed from the oxidation of DMS is SO\textsubscript{3} (ref. 6 and 7) which is subsequently oxidized to sulfur trioxide (SO\textsubscript{3}) by reaction with the hydroxyl radical (HO\textsuperscript{*}) and with O\textsubscript{2}.\textsuperscript{8–10} Next, SO\textsubscript{3} is hydrated to form sulfuric acid ($\text{H}_2\text{SO}_4$) and sulfates (SO\textsubscript{4}\textsuperscript{2−}). These reactions have been extensively studied, mainly because of their importance in tropospheric aerosol layer formation, which is related to global atmospheric chemistry\textsuperscript{11} including cloud condensation,\textsuperscript{12} altering the chemical composition and influencing the course of aqueous reactions in clouds. On the other hand, the anomalous enhancement of SO\textsubscript{2} abundance in the polar stratospheric aerosol layer during springtime has been postulated to originate from photodissociation of H\textsubscript{2}SO\textsubscript{4} to form water and sulfur trioxide which rapidly decays to SO\textsubscript{2}.\textsuperscript{13} This photodissociation process was previously assumed to take place via absorption of ultraviolet (UV) radiation. However, the electronic absorption spectrum of H\textsubscript{2}SO\textsubscript{4} above 140 nm could not be found experimentally\textsuperscript{14–16} or in computations.\textsuperscript{17–19} The lowest energy electronic transition in H\textsubscript{2}SO\textsubscript{4}, using coupled cluster methods and correlation consistent basis sets, was calculated to be at 139 nm.\textsuperscript{20} This leads to the conclusion that H\textsubscript{2}SO\textsubscript{4} absorbs in the infrared (IR) and near infrared (NIR) regions, with the OH stretching vibration playing the dominant role, and that electronic excitation will only be significant at very high energies, well above those available from the sun in the earth’s atmosphere.\textsuperscript{2,5} Because UV photons are absorbed at higher altitudes, only a small fraction of photons with wavelengths shorter than 179 nm will penetrate into the lower mesosphere and upper stratosphere,\textsuperscript{21} making UV photodissociation of H\textsubscript{2}SO\textsubscript{4} unlikely to occur at lower altitudes.\textsuperscript{14}

Following this, it was proposed that some OH-containing species in the atmosphere absorb visible radiation which can potentially induce transitions to vibrational overtones with several quanta in the $\nu_9$ OH stretching mode.\textsuperscript{22,23} The vibrational overtones for H\textsubscript{2}SO\textsubscript{4} were previously calculated\textsuperscript{16} and found to be in the visible range, at 741 nm, 608 nm, and 519 nm wavelengths, for excitations of $\nu_9 = 4, 5, \text{and} 6$. Also, the computed absorption cross-sections at the QCISD/6-311++G(2d,2p) level of theory were found to be appreciable for these vibrational levels, ranging from 2.0 × 10\textsuperscript{-21} to 2.6 × 10\textsuperscript{-23} cm molecule\textsuperscript{-1}. Depending on the altitude, the reported first order photodissociation rate constants $j$ are 10\textsuperscript{-8} s\textsuperscript{-1} (vibrational overtones) and 10\textsuperscript{-11} to 10\textsuperscript{-8} s\textsuperscript{-1} (UV excitation), respectively. Related calculations suggest that dissociation of H\textsubscript{2}SO\textsubscript{4} is possible mainly from highly excited...
OH-stretching vibrational overtones.\textsuperscript{16} Hence, the vibrational spectroscopy of \( \text{H}_2\text{SO}_4 \) has been studied intensively in the NIR and visible regions, both experimentally\textsuperscript{14,24-27} and computationally.\textsuperscript{18,19,27} Even though the vibrationally induced decomposition \( \text{H}_2\text{SO}_4 \rightarrow \text{SO}_3 + \text{H}_2\text{O} \) has not been observed, it is conceivable that exciting higher OH-stretching states in \( \text{H}_2\text{SO}_4 \) by visible light provides sufficient energy for photodissociation. This process is likely because the energy barrier for dissociation is in the range of 32–40 kcal mol\textsuperscript{-1}, according to calculations.\textsuperscript{28-30}

On the other hand, vibrational mode-specific reactivity has already been observed experimentally, for example, for the reaction of methane on a nickel surface.\textsuperscript{31}

Previously, the dynamics of the photodissociation reaction following excitation with \( \nu_9 = 4 \) to 6 quanta in the OH-stretching vibration has been investigated by classical trajectory simulations together with semiempirical PM3 electronic structure calculations,\textsuperscript{32} or parametrized force fields (FFs).\textsuperscript{33} It was found that the photodissociation reaction occurs typically on a picosecond timescale – depending on the level of excitation – which is significantly faster than the collision rate in the atmosphere.\textsuperscript{13}

The MD simulations also showed that photoexcitation can lead to (a) intramolecular H-transfer or (b) nonstatistical, impulsive \( \text{H}_2\text{O} \)-elimination and statistical, intramolecular vibrational-energy redistribution (IVR).\textsuperscript{30,32}

Because vibrationally induced photodissociation has as yet not been observed experimentally for \( \text{H}_2\text{SO}_4 \), suitable observables are required to detect such a decay mechanism. One possibility is to determine final state distributions of the individual energy components for the fragments \( \text{H}_2\text{O} \) and \( \text{SO}_3 \) after photodissociation. Such information is now available from suitable experiments.\textsuperscript{34–36} Also a competition between the two reaction channels, which have similar activation energies, may affect the decay rate. In order to understand in detail the dynamics of vibrationally induced decomposition of \( \text{H}_2\text{SO}_4 \), reactive molecular dynamics simulations are performed using multisurface adiabatic reaction dynamics (MS-ARMD).\textsuperscript{37} This method (a) combines fitted empirical force fields for different user-defined states to a global potential energy surface (PES) of the system, (b) is based on adiabatic reactive MD,\textsuperscript{38,39} (c) is capable of treating multiple reaction pathways and (d) conserves total energy along a reactive trajectory. As MS-ARMD is a force field-based method, a statistically significant number of trajectories can be run and analyzed. In the present work we investigate the dynamics on a new, fully dimensional reactive PES capable of following intramolecular H-transfer and water elimination (\( \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{O} + \text{SO}_3 \)) in \( \text{H}_2\text{SO}_4 \) upon vibrational excitation of the OH-stretching mode. For this, MS-ARMD was employed.\textsuperscript{37} The global PES is based on reference electronic structure calculations at the MP2/6-311G++(2d,2p) level. All \textit{ab initio} calculations were performed using Gaussian09.\textsuperscript{30} The energy at the equilibrium geometry of \( \text{H}_2\text{SO}_4 \) was chosen as the global zero and serves as a common origin for all \textit{ab initio} energies. Using previously and separately parametrized FFs for the different states, including \( \text{H}_2\text{O} \), \( \text{SO}_3 \), the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex, and \( \text{H}_2\text{SO}_4 \), representative geometries were collected from MD simulations which cover the regions of the multidimensional PES relevant to the equilibrium dynamics.\textsuperscript{30} Starting from the optimized geometry, each system was heated to 300 K and subsequently equilibrated for 40 ps, followed by 10 ns of free dynamics at constant total energy. Along the three trajectories, approximately 1000 geometries were selected for \( \text{H}_2\text{O} \), \( \text{SO}_3 \), and \( \text{H}_2\text{SO}_4 \), respectively. A similar procedure was followed for the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex (see below). Additionally, a rigid 2D scan along the dihedral angles H7–O6–S1–O4 and H5–O4–S1–O6 (Fig. 1) in \( \text{H}_2\text{SO}_4 \) was performed resulting in an extra 1296 reference data points (648 independent calculations) which were added to the previous 3000 structures.

The functional form of the force field which describes the \( \text{H}_2\text{SO}_4 \) and \( \text{H}_2\text{O} + \text{SO}_3 \) states, including the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex, is

\[
V(x) = \sum_{\text{bonds}} \left( 1 - e^{-\beta(r-r_0)} \right)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 + \sum_{\text{Urey-Bradley}} K_{UB} (S - S_0)^2 + \sum_{\text{dihedral}} H_\phi (1 + \cos (n\phi - \delta)) + \sum_{\text{impropers}} K_o (\omega - \omega_0)^2 + \sum_{ij} \left( \frac{m_i q_j}{m - n} \left[ \left( \frac{r_{\min.}}{r_{ij}} \right)^m - \frac{m}{n} \left( \frac{r_{\min.}}{r_{ij}} \right)^n \right] + \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \right)
\]  

(1)

Fig. 1 Yosa et al.: sulfuric acid with atom numbering used throughout the text. The librational motion of O4 and H5, related to the dihedral angle H5–O4–S1–O6, is indicated by light spheres.

\section*{2 Computational methods}

\subsection*{2.1 Force field parametrization}

The present work employs a global, parametrized and reactive potential energy surface (PES) to follow intramolecular H-transfer and water elimination (\( \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{O} + \text{SO}_3 \)) in \( \text{H}_2\text{SO}_4 \) upon vibrational excitation of the OH-stretching mode. For this, MS-ARMD was employed.\textsuperscript{37} The global PES is based on reference electronic structure calculations at the MP2/6-311G++(2d,2p) level. All \textit{ab initio} calculations were performed using Gaussian09.\textsuperscript{30} The energy at the equilibrium geometry of \( \text{H}_2\text{SO}_4 \) was chosen as the global zero and serves as a common origin for all \textit{ab initio} energies. Using previously and separately parametrized FFs for the different states, including \( \text{H}_2\text{O} \), \( \text{SO}_3 \), the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex, and \( \text{H}_2\text{SO}_4 \), representative geometries were collected from MD simulations which cover the regions of the multidimensional PES relevant to the equilibrium dynamics.\textsuperscript{30} Starting from the optimized geometry, each system was heated to 300 K and subsequently equilibrated for 40 ps, followed by 10 ns of free dynamics at constant total energy. Along the three trajectories, approximately 1000 geometries were selected for \( \text{H}_2\text{O} \), \( \text{SO}_3 \), and \( \text{H}_2\text{SO}_4 \), respectively. A similar procedure was followed for the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex (see below). Additionally, a rigid 2D scan along the dihedral angles H7–O6–S1–O4 and H5–O4–S1–O6 (Fig. 1) in \( \text{H}_2\text{SO}_4 \) was performed resulting in an extra 1296 reference data points (648 independent calculations) which were added to the previous 3000 structures.

The functional form of the force field which describes the \( \text{H}_2\text{SO}_4 \) and \( \text{H}_2\text{O} + \text{SO}_3 \) states, including the \( \text{H}_2\text{O} \cdot \cdot \cdot \text{SO}_3 \) van der Waals complex, is

\[
V(x) = \sum_{\text{bonds}} \left( 1 - e^{-\beta(r-r_0)} \right)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 + \sum_{\text{Urey-Bradley}} K_{UB} (S - S_0)^2 + \sum_{\text{dihedral}} H_\phi (1 + \cos (n\phi - \delta)) + \sum_{\text{impropers}} K_o (\omega - \omega_0)^2 + \sum_{ij} \left( \frac{m_i q_j}{m - n} \left[ \left( \frac{r_{\min.}}{r_{ij}} \right)^m - \frac{m}{n} \left( \frac{r_{\min.}}{r_{ij}} \right)^n \right] + \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \right)
\]  

(1)

Published on 14 July 2014. Downloaded by ETH-Zurich on 24/03/2015 12:40:58. This journal is © the Owner Societies 2014
where $r_0$ is the equilibrium bond distance, $D_e$ is the dissociation energy, and $\beta$ controls the steepness and width of the Morse potential. In all FFs the bonds were treated with Morse potentials. For every angle in the three molecules H$_2$SO$_4$, H$_2$O and SO$_3$ (i.e., H$_5$–O$_4$–S$_1$, O$_2$–S$_1$–O$_3$, etc., see Fig. 1) two potentials were used; one of them is the usual harmonic potential involving three atoms, whereas the second is a Urey–Bradley term which is a quadratic interaction potential of the distance between atoms separated by two bonds (1, 3 interaction). All dihedral angles in H$_2$SO$_4$ are described by proper dihedral terms. For SO$_3$ additional improper dihedral potentials were employed symmetrically to maintain its planarity. Generalized-exponent Lennard-Jones potentials (or Mie potentials) were used for the H$_2$SO$_4$ molecule between 1 and 4 (e.g. H5 and O2 see Fig. 1) and 1 and 5 (between H5 and H7 see Fig. 1) neighboring atoms. Point charges were obtained by fitting the molecular electrostatic potential (ESP) using the CHELPG scheme within Gaussian. Initial values for all other parameters were taken or calculated (i.e. for generalized Lennard-Jones) from standard CHARMM parameters and a standalone Fortran code based on the downhill simplex algorithm was used for optimizing the parameters to match the ab initio reference energies.

With the refined FF parameters for H$_2$O and SO$_3$, the generalized Lennard-Jones (GLJ) parameters and atomic charges (last term in eqn (2)) were fitted in order to describe the intermolecular interactions for the H$_2$O–SO$_3$ van der Waals complex. The initial guesses for the GLJ parameters are obtained from the Lennard-Jones parameters between pairs of atoms $i$ and $j$ using the Lorentz–Berthelot combination rules in which $E_{ij}$ is the geometric mean of $E_i$ and $E_j$ and $r_{min,ij}$ is the arithmetic mean of $r_{min,i}$ and $r_{min,j}$. For the GLJ potential, $E_{ij}$ ($>0$) and $r_{min,ij}$ are also the well-depth and the corresponding separation at this energy minimum, respectively. As a reference for the fitting, electronic structure calculations were carried out on approximately 1000 geometries collected from an MD simulation at 300 K for the van der Waals complex (see above). Two different parameter sets describe the reactant and product.

The FF in eqn (2) is also suitable to follow H-transfer in sulfuric acid. Because there are 12 different ways in which the two H-atoms can be arranged, the final PES needs to be permutationally invariant. In total, there exist 4 different final states which give rise to 16 FFs that are required to describe all possible reaction pathways of interest in the present work. The 16 states are connected through 48 transition states.

In a next step, the FFs for the states involved in the reactions (H$_2$SO$_4$ and H$_2$O + SO$_3$) are combined with a global PES for reactive molecular dynamics simulations. For this, geometrically dependent weights $w_j(x)$ are used to generate the global PES from the individual FFs $V_j(x)$. Increased flexibility for the MS-ARMD PES is required in the barrier regions where the FFs of the states – i.e. H$_2$SO$_4$ and H$_2$O + SO$_3$ – cross. This is accomplished by using products of Gaussian and polynomial functions (GAPOs) of the energy difference ($\Delta V_j$) between the PESs involved.

$$\Delta V_{\text{GAPO},k}(x) = \exp \left( \frac{(\Delta V_j(x) - V^{\text{min}}_{j,k})^2}{2\sigma_{j,k}^2} \right) \times \sum_{l=0}^{m_{j,k}} a_{j,k}(l) (\Delta V_j(x) - V^{\text{min}}_{j,k})^l.$$

where $V^{\text{min}}_{j,k}$ and $\sigma_{j,k}$ denote the center and the standard deviation of the Gaussian functions, respectively, $\Delta V_j(x) = V_j(x) - V_j(x)$, and $a_{j,k,l}$ are the coefficients of the polynomials. The global PES is then a weighted sum of PESs (first term in eqn (3)) combined with the weighted GAPOs (second term in eqn (3)) which allows us to better capture the barrier region.

$$V_{\text{MS-ARMD}}(x) = \sum_{i=1}^{n} w_i(x) V_i(x) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left[ w_i(x) + w_j(x) \right] \sum_{k=1}^{m_{j,k}} \Delta V_{\text{GAPO},k}(x).$$

and the sum runs up to $n = 16$. Parameters of the GAPO functions were optimized to reproduce the barrier height for both processes of interest, water elimination and intramolecular H-transfer. The reference points in the fit were augmented by points along both minimum energy paths (MEPs) determined from quadratic synchronous transit (QST2) calculations followed by an intrinsic reaction coordinate (IRC) calculation at the MP2/6-311G+(2d,2p) level of theory. The MS-ARMD switching parameter $\Delta V$ and the overall shifts of the FFs (see ref. 37 for definitions) were optimized using the downhill simplex algorithm with $k = 3$ GAPOs and $m_{j,k} = 1$ (first order polynomial) for H$_2$O elimination, and $k = 2$ GAPOs with $m_{j,k} = 2$ for the H-transfer reaction.

The energy profile along the reference minimum energy path can be reproduced very closely (RMSD = 0.55 kcal mol$^{-1}$), as is shown in Fig. 2A (red squares) whereas the remaining electronic structure data are somewhat further away from a 1 : 1 correlation, but still close to it. Fig. 2B illustrates the two minimum energy pathways for water elimination and intramolecular H-transfer. The reference ab initio calculations yield a barrier height of 32.0 kcal mol$^{-1}$ for water elimination, and 36.6 kcal mol$^{-1}$ for intramolecular H-transfer, which is also closely captured by the fitted PES. The energetics establishes that for a meaningful treatment of the reactive dynamics both pathways need to be included. The present barrier for water elimination is comparable with previous estimates ranging from 32 to 40 kcal mol$^{-1}$ depending on the level of theory used.

2.2 Molecular dynamics simulations

All MD simulations were carried out using CHARMM with provisions for bond-breaking and bond-formation through MS-ARMD. Starting from a geometry optimized structure of H$_2$SO$_4$, the system was heated to 300 K. The equations of motion were solved using the leapfrog Verlet algorithm with a time step of $\Delta t = 0.1$ fs during 40 ps and equilibrated for 40 ps, followed by 50 ps of free dynamics simulations (i.e. constant energy).
The small time step is required to appropriately follow the rapid dynamics of the H-atoms.

Vibrational excitation of the OH stretching mode was modelled by scaling the instantaneous velocities along the $v_9$ normal mode which is predominantly an OH-stretching mode and is highly localized. The OH stretch potential can be realistically described by a Morse potential, for which the exact energy levels are known. The excitation energies include 13 490 cm$^{-1}$ ($v_9 = 4$), 16 494 cm$^{-1}$ (47.2 kcal mol$^{-1}$, $v_9 = 5$), and 19 328 cm$^{-1}$ (55.3 kcal mol$^{-1}$, $v_9 = 6$). Such an approach has also been successfully used for studying proton transfer in H-bonded complexes. Alternatively, positions and velocities can be scaled whereby both the kinetic and potential energies are modified. One possible drawback of modifying both positions and momenta is the fact that, after excitation, a short equilibration period (a few picoseconds) is required to avoid artifacts due to close proximity of atoms.

2.3 Final state analysis

For the final state analysis, the total energy of the system was decomposed into translational, rotational and vibrational components of each fragment. The translational energy of a reaction product is $E_{\text{trans}} = \frac{1}{2}Mv_{\text{CM}}^2$ where $M$ and $v_{\text{CM}}$ denote the mass and the velocity of the center of mass for the given fragment (H$_2$O and SO$_3$). Following classical mechanics, the angular momentum vector of a reaction product (with $N$ atoms) is

$$\mathbf{L} = \sum_{i=1}^{N} m_i (r_i - r_{\text{CM}}) \times (v_i - v_{\text{CM}}).$$

Here, $r_{\text{CM}}$ and $v_{\text{CM}}$ denote the position and the velocity vectors of the center of mass for the given fragment. This yields the rotational energy $E_{\text{rot}} = \frac{1}{2}I \Theta^{-2} \mathbf{L}$ where $\Theta$ is the moment of inertia tensor of the fragment $\Theta = \sum_{i=1}^{N} m_i (r_i^2 - r_{\text{CM}}^2)$ and $I$ is the unit tensor. From $E_{\text{trans}}$ and $E_{\text{rot}}$ the vibrational energy of each product is determined through $E_{\text{vib}} = E_{\text{kin}} - E_{\text{trans}} - E_{\text{rot}} + V$ where $V$ denotes the intramolecular potential energy of the given reaction product. Once the two fragments have moved sufficiently far from the interaction region (here taken as 20 Å between the SO$_3$-sulfur and the H$_2$O-oxygen atoms), the translational and rovibrational energy of each fragment will be constant. As the vibrational and rotational modes in each fragment keep on exchanging energy if the angular momentum is nonzero, these quantities are averaged over periods much longer (i.e. 5 ps) than the characteristic time for vibrations within the molecules.

The angular momentum quantum number $j$ can be calculated from the classical-quantum correspondence relationship $L^2 = j(j + 1)\hbar^2$ in which $\hbar$ is Planck’s constant. The orbital angular momentum ($L_{\text{orbital}}$) can be determined from the individual angular momenta of the fragments and from the conservation of total angular momentum. Considering the photodissociation reaction as an inverse scattering process in the framework of classical mechanics, it is useful to introduce the perpendicular distance ($b_{\text{scatter}}$) between the asymptotic paths of the fragments in analogy with the impact parameter of bimolecular reactions: $b_{\text{scatter}} = L_{\text{orbital}}/\sqrt{2\mu(E_{\text{trans,tot}})}$. Here, $\mu$ and $E_{\text{trans,tot}}$ are the reduced mass and the sum of translational energies of the fragments, respectively, and $L_{\text{orbital}} = |L_{\text{orbital}}|$. This scattering parameter provides information about the relative displacement of the fragmentation partners at the moment of breakup.

3 Results

3.1 Validation of the force field

The energy-minimized structures at the MP2/6-311G++(2d,2p) level and using the force field have $C_2$-symmetry (see Fig. 1). A comparison of equilibrium bond lengths, angles and dihedral angles between the two treatments is provided in Table S-I (ESI†). The positional root-mean-square deviations (RMSDs) are 0.04 Å for H$_2$SO$_4$ and 0.001, 0.001 and 0.13 Å for SO$_3$, H$_2$O and the vdW complex, respectively. For bond lengths and valence angles the average difference between the MP2 reference and the FF structures is less than 0.03 Å and around 3°, respectively. This, together with the results from Fig. 2A, suggests that the force field is parametrized in a meaningful way.

Previous computational work on rotamers for sulfuric acid revealed the existence of two minimum energy geometries with point group symmetries $C_2$ and $C_{4v}$, connected by two saddle

![Fig. 2](https://example.com/image2.png)
points with $C_1$ symmetry, 4.9 kcal mol$^{-1}$ and 5.4 kcal mol$^{-1}$ higher in energy than the $C_2$ structure. The lower of the two saddle points is called $C_{1a}$ whereas the higher one is $C_{1b}$. The energies of the two saddle points at the current level of theory are around 1 kcal mol$^{-1}$ higher than those computed by Lohr and Havey, who found them to be 3.34 and 4.16 kcal mol$^{-1}$ (at the HF/STO-3G level) and 1.45 and 4.06 kcal mol$^{-1}$ (at the B3LYP/6-311G(2d,2p) level) in the two studies, respectively.\footnote{24,50}

A comparison between the reference and fitted FF energies for the torsional degrees of freedom is presented in Fig. 3. The two saddle points on the FF PES are 3.7 kcal mol$^{-1}$ and 4.3 kcal mol$^{-1}$ above the global $C_2$ minimum which is comparable with 4.9 kcal mol$^{-1}$ and 5.4 kcal mol$^{-1}$ in the MP2 reference calculations. In addition, a normal mode analysis was performed in order to compare the experimentally observed vibrational frequencies with those from the MP2 and FF calculations. All MP2 frequencies were scaled with a factor of 0.97 (MP2/6-31+G(d,p)\cite{51} and MP2-IE/6-311G(d,p)\cite{52}). As the FF is based on MP2 calculations, the vibrational frequencies obtained from the normal mode analysis using the FF were also scaled with the same scaling factor. Comparisons of individual frequencies are reported in Table S-II (ESI\footnote{†}). The average differences between experimental,\footnote{53-55} MP2 and FF harmonic frequencies for $H_2SO_3$, $SO_3$, $H_2O$ and $H_2O \cdot SO_3$ are $[72, 20, 22, 41]$ cm$^{-1}$ (MP2 vs. FF), $[53, 52, 87, 65]$ cm$^{-1}$ (expt. vs. MP2), and $[88, 68, 65, 69]$ cm$^{-1}$ (expt. vs. FF).

### 3.2 Reaction dynamics

With a suitably formulated and accurately parametrized FF which can reproduce optimized geometries, torsional and reaction barrier heights, and vibrational frequencies (see Tables S-I and S-II (ESI\footnote{†}) and Fig. 2 and 3) close to those computed from reference electronic structure calculations at the MP2 level, reactive molecular dynamics simulations were carried out. For a statistically significant number of reactive events, 7000 independent trajectories were run using MS-ARMD for $\nu_9 = 4, 5, 6$. The global PES can describe the two energetically accessible channels: water elimination and intramolecular H-transfer. Because the barrier heights for both processes are accurately described by the MS-ARMD PES, the competition between the two reactive channels can also be studied.

From 7000 independent trajectories with a maximum simulation time of 1 ns, 4048 (57.8%), 5418 (77.4%) and 5599 (79.9%) trajectories for excitation of $\nu_9 = 4, 5$ and 6, respectively, showed either water elimination or intramolecular H-transfer. The remaining trajectories (42.2%, 22.6% and 20.1%) are not reactive. From the reactive trajectories, 57.3% ($\nu_9 = 4$), 52.6% ($\nu_9 = 5$) and 13.8% ($\nu_9 = 6$), exhibit intramolecular H-transfer without subsequent water elimination. For water elimination, two different mechanisms were found: (i) water elimination is the only process and (ii) intramolecular H-transfer precedes water elimination. For (i) 35 (0.5%), 1495 (21.4%) and 3779 (54.0%) trajectories were observed whereas for (ii) 0, 236 (3.4%) and 853 (12.2%) events were found for $\nu_9 = 4, 5$ and 6, respectively. These results suggest that excitation of $\nu_9 = 4$ is probably not sufficient to obtain significant amounts of SO$_3$ on the nanosecond time scale whereas excitation of $\nu_9 \geq 5$ results in a rapid decay.

Panels A and B of Fig. 4 report the percentage of reactive events as a function of reaction time for water elimination with $\nu_9 = 5$ and 6, respectively. For the excitation with $\nu_9 = 5$ a maximum lifetime for direct water elimination of around 300 ps is found which reduces to approximately 100 ps for excitation with $\nu_9 = 6$. Contrary to that, for case (ii) the percentage of decays increases linearly for both, excitation of $\nu_9 = 5$ and 6 (green curves in Fig. 4).

Fig. 4C and D show lifetime distributions for the two possible mechanisms on a semi-logarithmic scale. Direct water elimination (grey) for $\nu_9 = 5$ (Fig. 4C) is slower than for $\nu_9 = 6$ (Fig. 4D) while for the process in which water elimination is preceded by intramolecular H-transfer (blue), the rates are constant in time. However, the absolute number of events differs by a factor of $\approx 5$ between the two excitation levels.
For excitation of $\nu_9 = 6$ the trajectories in which $\text{H}_2\text{SO}_4$ did not decay within 1 ns the dynamics was continued out to 40 ns. By that time 6844 (98%) out of the 7000 trajectories decayed to $\text{H}_2\text{O}$ and $\text{SO}_3$ of which 3995 (57%) went through direct water elimination reaction (breakup after 1.26 ps) whereas the right column corresponds to the last 3 ps of a slow reaction (breakup after $\approx 111$ ps), for two representative trajectories with an excitation of $\nu_9 = 6$. Note the characteristic torsional dynamics in the left panel.

For excitation of $\nu_9 = 6$, 90% of events are found to occur in less than 10 ns (Fig. S-I, ESI† black curve). For direct water elimination, a rapid increment is observed until 400 ps after which very few additional new events are observed. Conversely, water elimination preceded by intramolecular H-transfer continues to increase until $\approx 15$ ns after vibrational excitation.

Fig. 5 reports time series of selected internal coordinates along two trajectories with very different reaction times for water elimination. The left panels correspond to a rapid reaction occurring in less than 2 ps whereas the right hand panels are for a situation in which the vibrational excitation redistributes on the 100 ps time scale before water elimination. For the rapid process, the H5–O4–S1–O6 dihedral angle at time 0 starts close to the $C_2$ minimum (90°). Initially, the motion of this dihedral angle is similar to a librational mode, fluctuating around 80°. When the reaction occurs at around 1.26 ps, the H5–O4–S1–O6 dihedral angle reaches 0°, which is the lowest saddle point in the transition from the $C_2$ to the $C_s$ minimum (see Fig. 1 and 3). On the other hand, the H5–O4 bond length fluctuates around an average value of about 1.1 Å and reaches a maximum of 1.45 Å when the reaction takes place at 1.26 ps. At this point, the distance between atoms H5 and O6 is $\approx 1.4$ Å, which is close to the transition state geometry, see Fig. 1.28–30 Fig. 5 suggests that for trajectories with such a rapid reaction, these two coordinates (dihedral angle and OH bond length) play an important role in the reaction path. However, a more detailed reaction coordinate analysis is required to better understand this aspect.56

For the trajectory which shows water elimination after $\approx 111$ ps, see Fig. 5, right panel, several intramolecular H-transfers occur before $t = 108$ ps. In addition, large torsional and angular excursions are observed which leads to visiting both possible minimum energy structures, see Fig. 3. Such motions occur on the picosecond time scale, as can be seen in the right hand panels of Fig. 5B. Concomitantly, the H5–O4–S1 angle and S1–O6 bond also pick up a considerable amount of energy which assists the eventual dissociation along the coordinates H5–O4 and S1–O6.

### 3.3 Final state analysis

Final state analysis is a meaningful way to characterize the outcome of a gas phase reaction. Because experimentally the direct investigation of the water elimination reaction is challenging, a computational exploration of the likely outcomes of such an experiment is potentially helpful. Contrary to previous efforts, the present simulations are capable of making concrete and quantitative statements about this aspect for several reasons. Firstly, MS-ARMD conserves total energy, which is essential if a meaningful final state analysis is to be performed. Secondly, the current reactive PES is much improved over the previous force field in that it realistically captures the important torsional degrees of freedom. Thirdly, the present treatment allows both, intramolecular H-transfer and water elimination which is essential because the barrier height for both processes is comparable.

In order to investigate the energy distribution after vibrational excitation and subsequent water elimination, the translational, rotational and vibrational energies in the reaction products were determined following established methodologies.57 The analysis was carried out for all trajectories that experienced water elimination within 1 ns. The final state analysis starts when the sulfur–oxygen(water) distance exceeds 20 Å. Trajectories were then continued for an additional 5 ps during which 500 snapshots were collected and analyzed. Translational, rotational, vibrational, rovibrational energies and the rotational quantum number were computed for every snapshot and rotational and vibrational energies were averaged over all 500 snapshots from which probability distributions of the averaged values could be determined.

Fig. 6 shows distributions for all energy components of the products for excitation of $\nu_9 = 5$ and 6, respectively. Three distributions, each normalized individually, are reported. One of them (solid line) is the overall distribution of the particular energy component which would be the expected experimental signal. The two histograms are distributions for direct water elimination (without prior intramolecular H-transfer) and energy distributions for events in which intramolecular H-transfer precedes water elimination, respectively. It is found that the two partial energy distributions peak at different maximal energies in general. This is most prominent for the translational and...
vibrational energies in SO₃. For ν₀ = 6, a maximum peak at about 20 kcal mol⁻¹ is observed for the H₂O-translational energy for the direct reaction, whereas for SO₃ this quantity peaks at 5 kcal mol⁻¹ (Fig. 6 grey trace). Contrary to that, reactions with prior H-transfer lead to a maximum peak in the translational energy distribution at 12 kcal mol⁻¹ for H₂O and ≈ 3 kcal mol⁻¹ in the case of SO₃. The translational energies of the products are correlated due to conservation of linear momentum, which was initially zero by preparation. On the other hand the rotational energies are similarly distributed for trajectories showing water elimination with or without previous H-transfer. The peaks for the two differ only by about 1 kcal mol⁻¹. The angular momenta of the products, and therefore their rotational energies, are not correlated, contrary to the linear momentum. This is due to the presence of orbital angular momentum.

The angular momentum distributions can also be discussed within the framework of a scattering process. The geometrical situation is schematically summarized in Fig. 7 where perpendicular distances of the asymptotic paths of the fragments are characterized by a Gaussian distribution centered around b_{scatter} ~ 0.7 Å. While the distributions for the direct and indirect mechanisms were distinctly different, they proved to be largely independent of the level of excitation: b_{scatter}^{\text{direct}} = μ ± σ = 0.72 ± 0.18 Å (ν₀ = 4), 0.67 ± 0.19 Å (ν₀ = 5) and 0.66 ± 0.19 Å (ν₀ = 6) and b_{scatter}^{\text{indirect}} = μ ± σ = 0.89 ± 0.31 Å (ν₀ = 5) and 0.85 ± 0.27 Å (ν₀ = 6). I.e. the impact parameter for direct water elimination is typically 25% smaller than that for the indirect process. The magnitudes of b_{scatter} and the translational energies of the fragments explain the large orbital angular momentum (L_{orbital} ≈ 60). The high orbital angular momentum is compensated for by the rotational excitation of SO₃ (see Fig. 8 bottom panel) to conserve the total angular momentum. This suggests that when the system slides down on the product side of the barrier the O-atom which loses its hydrogen atom will experience a significant force which is transmitted as a torque to the leaving SO₃ fragment. The relative magnitudes of the rotational excitation of the fragments (J_{max}^{\text{H₂O}} ~ 5 and J_{max}^{\text{SO₃}} ~ 50) can also be rationalized by noting that the rotational constants of H₂O and SO₃ differ by almost 2 orders of magnitude (9 to 27 cm⁻¹ compared to 0.17 and 0.34 cm⁻¹, respectively). Noting that the two fragments receive similar amounts of rotational energy, the ratios of the maximum J follows from B_{H₂O}^{SO₃}/B_{SO₃}^{H₂O} ~ 100 ~ \left(\frac{J_{max}^{SO₃}}{J_{max}^{H₂O}}\right)^{2} from which one obtains J_{max}^{SO₃}/J_{max}^{H₂O} ~ 10 which is what is found in Fig. 8.

Overall, the analysis suggests that when water elimination is preceded by H-transfer the excess energy goes into vibrational

---

**Fig. 6** Yosa et al.: energy distribution for the H₂O and SO₃ fragments. Contribution of translational, rotational, vibrational and rovibrational energies are shown for the two processes; direct water elimination (black histograms) and water elimination preceded by intramolecular H-transfer (red histograms) for ν₀ = 5 (left) and 6 (right). Overall distributions are represented by the green curve.

**Fig. 7** Yosa et al.: generation of the angular momenta in the final state. The blue arrows on H₂SO₄ illustrate the H-transfer step which leads to water elimination. Due to the off-center breakup and the conservation of total angular momentum the two fragments, SO₃ and H₂O, separate in a counterrotating manner with high fragment angular velocities, indicated by the curved arrows.
and rotational degrees of freedom. In other words, H-transfer during the nonequilibrium dynamics promotes energy redistribution within the complex. On the other hand, for direct water elimination the initial energy disposed in the system preferably goes into translational energy.

3.4 Kinetic analysis

Photoexcitation generates a non-equilibrium distribution of sulfuric acid molecules from the initial canonical ensemble at 300 K. Due to coupling between vibrational modes the ensemble relaxes to a microcanonical distribution at every energy if ergodicity for the undecayed species is assumed. However, because vibrational excitation to \( \nu_0 \geq 4 \) provides energy above the dissociation limit the available phase space cannot be further explored by \( \text{H}_2\text{SO}_4 \), which limits the degree to which this system is ergodic. As the time scales for direct water elimination and IVR are similar, statistical rate theories which assume microcanonical or canonical ensembles, cannot be employed.

In the following a simple kinetic model is set up to extract first-order rate parameters from the trajectories in order to characterize the long-time behavior of the system. The relaxation of the initially excited population of reactant molecules \( \{\text{R}_0^* = \text{H}_2\text{SO}_4^*(\nu_0 = 4, 5, 6)\} \) during the free dynamics is modeled as a process of \( n \) consecutive steps, including states \( \text{R}_i^* \) \( (i = 1, \ldots, n) \) which are relaxed to various extents. The final population \( \{\text{R}_n^*\} \) is considered to be fully relaxed which is a mixture of microcanonical ensembles with weights reflecting the initial canonical ensemble before excitation. Stepwise IVR to yield \( \text{R}_n^* \) (i.e. complete redistribution of the available energy) is related to the fact that under the present conditions (absence of a collision partner \( \text{M} \)), the deactivation process \( \text{R}_n^* + \text{M} \rightarrow \text{R}_n + \text{M} \) cannot occur. In other words, full relaxation is only possible if the time scales for IVR are shorter than the average collision time under atmospheric conditions. From each \( \text{R}_i^* \) the formation of excited (translationally, rotationally, and vibrationally) products \( \{\text{P}^* = (\text{H}_2\text{O} + \text{SO}_3)^*\} \) is possible which is assumed to follow a first-order kinetics. Note that no distinction is made between products obtained from different reactant ensembles. The proposed kinetic model is the following:

\[
\text{R}_0^* \xrightarrow{k_{\text{IVR},0}} \cdots \xrightarrow{k_{\text{IVR},i-1}} \text{R}_i^* \xrightarrow{k_{\text{IVR},i}} \cdots \xrightarrow{k_{\text{IVR},n-1}} \text{R}_n^* \tag{4}
\]

\[
\text{R}_i^* \xrightarrow{k_i} \text{P}^* \quad i = 0, \ldots, n \tag{5}
\]

In the following it is assumed that a single rate coefficient, \( k_{\text{IVR},i} \) and \( k_i \) can characterize the average behavior of the various energy states in a given relaxation or decomposition step, respectively. This is a reasonable assumption as the average energy and its spread within the ensemble \( \{E_{\text{G0k}} = 8.16 \text{ kcal mol}^{-1} \text{ and } \sigma_E = 2.27 \text{ kcal mol}^{-1}\} \) are small compared to its average energy after excitation \( \approx 47 \text{ kcal mol}^{-1} \) or more. The decomposition rate from the fully relaxed ensemble can be considered as an approximation to the microcanonical rate coefficient at the particular average energy. The corresponding system of kinetic differential equations for the time-evolution of the probabilities for the various states is:

\[
\frac{d[\text{R}_0^*]}{dt} = -\left(k_{\text{IVR},0} + k_0\right)[\text{R}_0^*] \tag{6}
\]

\[
\frac{d[\text{R}_i^*]}{dt} = -\left(k_{\text{IVR},i} + k_i\right)[\text{R}_i^*] + k_{\text{IVR},i-1}[\text{R}_{i-1}^*] \quad i = 1, \ldots, n-1 \tag{7}
\]

\[
\frac{d[\text{R}_n^*]}{dt} = -k_n[\text{R}_n^*] + k_{\text{IVR},n-1}[\text{R}_{n-1}^*] \tag{8}
\]

\[
\frac{d[\text{P}^*]}{dt} = \sum_{i=0}^{n} k_i[\text{R}_i^*] \tag{9}
\]

Initially, the entire population (100%) is in \( \text{R}_0^* \) and the probability of all other \( \text{R}_i^* \) is zero: \( [\text{R}_i^*](t = 0) = 0 \) for \( i > 0 \) and \( \text{P}(t = 0) = 0 \). The product yield \( \{[\text{P}^*](t)/[\text{R}_0^*](t = 0)\} \) as a function of time can be expressed in closed analytical form for a system of linear differential equations. Increasing the number of IVR steps \( \{\text{R}_n^*\} \) allows us to more accurately describe the relaxation process. The solution of the kinetic differential equations were fitted to the results of the trajectory calculations for the first nanosecond with increasing \( n \) values, corresponding to increasingly detailed relaxation models. A good fit is obtained if the \( \nu_0 = 4 \) excitation relaxes with a single step \( (n = 1) \) whereas for excitation \( \nu_0 = 5 \) and 6 two
and three-step relaxation models were required \((n = 2 \text{ and } n = 3)\), respectively.

It is noted that certain decomposition times, e.g. \(\tau_n = 358 \text{ ns}\) for excitation of \(v_9 = 4\), are considerably longer than the actual maximum simulation time. Consequently, it cannot be excluded that longer atomistic simulations (which would be possible in principle by using MS-ARMD but less so with QM/MD) can lead to changes in these values. On the other hand, such a value follows the trend observed for higher excitations (e.g. for \(v_9 = 6\)) for which \(\tau_n\) is about one order of magnitude longer than the next shorter decomposition time scale. Furthermore, the standard errors of the fitted parameters are typically around 1\text{--}2\%, and always below 5\%. Therefore the extrapolation of the kinetic curves and additional implications derived from them can be considered reliable, if one assumes that the kinetic model remains meaningful for longer timescales.

The need for additional relaxation steps to describe the observed kinetics for higher excitations is related to the fact that more energy has to be redistributed from a single mode, indicating that their \(R_0^*\) state is further from the fully equilibrated state. The first-order rate coefficients allow the definition of characteristic times \(\tau = k^{-1}\) for the processes. The product yields and the fitted curves of the corresponding relaxation models are shown in Fig. 9, and the fitted characteristic times are reported in Table 1.

The general observation is that decomposition steps \((\tau_n)\) speed up with higher excitation and slow down with the progress of relaxation. This is in accordance with the fact that a potential barrier has to be surpassed for the reaction to take place and the excitation of the OH stretching mode plays an important role in this. Decomposition from a non-relaxed ensemble \((\tau_{n-1})\) is 1 to 2 orders of magnitude faster than decomposition from the relaxed ensembles \((\tau_n)\): 19.5 ns < 360 ns \((v_9 = 4)\), [233 ps, 680 ps] < 18.6 ns \((v_9 = 5)\), and [30.6 ps, 64.0 ps, 403 ps] < 3 ns \((v_9 = 6)\). In contrast to that, relaxation times for the IVR steps, \(\tau_{\text{IVR}}\), for all excitations are similar \((\tau_{\text{IVR},n-1} = 80.7 \text{ ps}, 92.9 \text{ ps}, 148 \text{ ps for } v_9 = 4, 5 \text{ and } 6\) and \(\tau_{\text{IVR},n-2} = 23 \text{ ps}, 28.5 \text{ ps for } v_9 = 5 \text{ and } 6\), respectively) This implies that the relaxation kinetics is less energy dependent, the closer the ensemble is to its fully relaxed state.

Phenomenologically, this can be understood by considering the molecule as a system of coupled oscillators with well-defined coupling constants between them. The coupling parameters determine the relaxation time – i.e. the rate of energy exchange between various modes. With the increasing energy content of individual vibrational modes higher order couplings become more important. Consequently, the relaxation timescales for the different excitations become similar as the ensembles get closer to their equilibrium.

In order to investigate the role of H-transfer in the IVR process, 1000 additional 300 ps trajectories were run for \(v_9 = 6\) in which the H-transfer channel was closed. Hence, only one FF for H\(_2\)SO\(_4\) and two for H\(_2\)O+S\(_3\)O were used in the simulations. The same three-step kinetic model was fitted, but only the IVR timescales were allowed to vary while the water elimination parameters \(\tau_9\) remained unchanged. An accurate fit was achieved with similar, small parameter variations (see column \(v_9 = 6\) in Table 1). The removal of H-transfer increased the timescales of first two IVR steps significantly, by 34% and 18%, which suggests that H-transfer plays a significant role in accelerating IVR.

For excitations \(v_9 = 4\) and 5 the relaxation is significantly faster than decomposition from the initial non-equilibrium ensemble, which results in low conversion \((\approx 0.7\% \text{ and } 24\%\) within 1 ns. For excitation of \(v_9 = 6\) vibrational relaxation and direct decomposition have more similar rates, which leads to 66% conversion within 1 ns. Almost complete (i.e. 99\%) conversion is expected within 1.6 \(\mu\)s, 80 ns and 11.6 ns for excitations of \(v_9 = 4, 5\) and 6, respectively. As a comparison, the 40 ns trajectories with an excitation of \(v_9 = 6\) show conversion of 95.5\% within 11.6 ns after photoexcitation which is

<table>
<thead>
<tr>
<th>(v_9)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>6’</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) (keal mol(^{-1}))</td>
<td>46.8((\pm 2.3))</td>
<td>55.4((\pm 2.3))</td>
<td>63.5((\pm 2.3))</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(\tau_{\text{IVR},n-3})</td>
<td>—</td>
<td>—</td>
<td>3.9</td>
<td>5.2</td>
</tr>
<tr>
<td>(\tau_{\text{IVR},n-2})</td>
<td>—</td>
<td>23</td>
<td>28.5</td>
<td>33.7</td>
</tr>
<tr>
<td>(\tau_{\text{IVR},n-1})</td>
<td>80.7</td>
<td>92.9</td>
<td>148</td>
<td>145</td>
</tr>
<tr>
<td>(\tau_1)</td>
<td>23</td>
<td>180</td>
<td>1236</td>
<td></td>
</tr>
<tr>
<td>(\tau_9)</td>
<td>19.500</td>
<td>680</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>(\tau_p)</td>
<td>358 000</td>
<td>18 600</td>
<td>3000</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9 Yosa et al.: product yield as a function of time for the decomposition of sulfuric acid in free dynamics simulations after exciting the OH stretching vibrations with \(v_9 = 4, 5\) and 6 quanta in a canonical ensemble of molecules at 300 K. A simple kinetic model (see text) was fitted to the data, which allows determination of characteristic times (see Table 1) for first order relaxation and decomposition processes \((\tau_n)\) at the corresponding energies. Left panel reports data up to 1 ns with both axes on a logarithmic scale. The right panel (with yield on a linear scale) provides the data up to 40 ns which has only been determined for \(v_9 = 6\). It is found that beyond \(\approx 4\) ns additional IVR time scales appear.
In the present work it has been demonstrated that rigorous reactive molecular dynamics simulations for small molecules in the gas phase can be used to characterize the final state distribution of photofragmentation processes. For the specific
case of vibrationally induced photodissociation of H$_2$SO$_4$ to form H$_2$O and SO$_3$, the final state distributions will be useful in experimentally identifying such a reaction mechanism. Related work on Cl–CN following a more simplistic approach than the one pursued in the present work showed that a direct link between experiment and atomistic simulations can be established.\textsuperscript{61,62} Contrary to previous simulations for water elimination in H$_2$SO$_4$ which were more qualitative in nature,\textsuperscript{30,32} the present work employs a refined and physically more meaningful PES which allows us to follow both H-transfer and water elimination within the same framework. This is necessary because the two processes have similar barrier heights and can compete with each other. The results suggest that direct water elimination without preceding H-transfer follows exponentially decaying rate laws whereas the rate of the process proceeding through H-transfer is largely time-independent on the time scale of the present simulations (1 ns).

It is also interesting to compare the present results with earlier and more qualitative work.\textsuperscript{30,32} Although a statistically significant number of reactive trajectories could be analyzed from the previous ARMD simulations, the computational model only allowed to follow one reaction channel, namely water elimination. This led to quite different reaction time distributions compared to the present work which exhibits a more diverse and realistic reaction dynamics. Furthermore, the important torsional degrees of freedom are much more realistically represented in the current work but were only treated qualitatively in the earlier parametrization. The barriers for isomerization were much higher and therefore it was more difficult to transfer energy from the vibrationally excited OH stretching vibration into the torsions. Finally, the reaction barrier in the MS-ARMD PES is close to the best \textit{ab initio} calculations but is overestimated by several kcal mol$^{-1}$ in the earlier PES. All these differences lead to modifications in the reaction time distributions. Nevertheless, the overall conclusion from the previous investigation, namely that vibrationally induced photodissociation is a relevant and probable decay mechanism for H$_2$SO$_4$ in the middle atmosphere, remains unchanged.

The kinetic model used to analyze the rates following excitation suggests that a one-step IVR relaxation process is sufficient to explain the data when exciting $v_9 = 4$ whereas an increasing number of relaxation steps is required for excitation of $v_9 \geq 5$. This is consistent (a) with the fact that no water elimination with previous H-transfer has been observed \textit{i.e.} only direct water elimination in the simulations with excitation of $v_9 = 4$ and (b) with the fact that the barrier for water elimination (32.0 kcal mol$^{-1}$) is lower than that for H-transfer (36.6 kcal mol$^{-1}$). As for $v_9 = 4$ excitation occurs close to the barrier, this process may be influenced by the neglect of tunneling contributions. However, this does not affect the main conclusion of the present work, namely that vibrationally induced photodissociation is a viable route for decomposition of H$_2$SO$_4$ under the given circumstances.

A mechanistic interpretation of the various time scales in terms of elemental processes is not straightforward/evident. This is related to the fact that all elemental processes (H-transfer directly after excitation; subsequent H-transfers; water elimination) are characterized by distributions of reaction times and depending on the degree of relaxation, subsequent processes sensitively depend on the history of the trajectory. Including the possibility for third-body collisions and using realistic physical conditions for the relevant altitudes suggests that excitation of $v_9 = 5$ can become dominant for vibrationally induced photolysis below 40 km. For excitation by 4 quanta the quantum yield drops quickly with decreasing altitude, thereby excitation by 6 quanta can also become relevant for the photolysis rate in the lower stratosphere.

The present framework is a generic computational strategy to investigate non-RRKM decomposition reactions following vibrational excitation of small molecules in the gas phase. A challenging extension of the present work will consist of applying it to the reaction dynamics of excited molecules in solution. Several interesting experimental studies which provided fragmentation patterns following the excitation of small molecules in solution have recently appeared.\textsuperscript{63,64} As the present and previous investigations have shown, simulations can provide a deeper understanding of energy migration pathways in such complex systems.\textsuperscript{64,65}

References
