Showcasing the collaborative work of the Laboratory of Advanced Materials Physics, Department of Physics and Chemistry, ATeN Center, University of Palermo, Italy, and the Laboratory of Ultrafast Molecular Spectroscopy, Institute of Applied Physics, University of Bern, Switzerland.

The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale

Carbon nanodots are a fascinating family of nanomaterials well known for their bright fluorescence. We addressed their ability to behave as efficient electron donors in a model system where carbon dots are coupled to copper ions. We clarified for the first time the complex interaction between photoexcited carbon dots and metal ions from femtosecond to steady state, highlighting the key role of the solvent in driving charge transfer from the surface of the dots to the coupled system.

As featured in:

The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale†

A. Sciortino,a,b,c A. Madonia,a M. Gazzetto,c L. Sciortino,a E. J. Rohwer,c T. Feurer,c F. M. Gelardi,a M. Cannas,a A. Cannizzo* c and F. Messina1d,a,d

Fluorescent carbon nanodots are a novel family of carbon-based nanoscale materials endowed with an outstanding combination of properties that make them very appealing for applications in nanosensing, photonics, solar energy harvesting and photocatalysis. One of the remarkable properties of carbon dots is their strong sensitivity to the local environment, especially to metal ions in solution. These interactions provide a testing ground for their marked photochemical properties, highlighted by many studies, and frequently driven by charge transfer events. Here we combine several optical techniques, down to femtosecond time resolution, to understand the interplay between carbon nanodots and aqueous metal ions such as Cu2+ and Zn2+. We find that copper inhibits the fluorescence of carbon dots through static and diffusional quenching mechanisms, and our measurements allow discriminating between the two. Ultrafast optical methods are then used to address the dynamics of copper-dot complexes, wherein static quenching takes place, and unveil the underlying complexity of their photocycle. We propose an initial increase of electronic charge on the surface of the dot, upon photo-excitation, followed by a partial electron transfer to the nearby ion, with 0.2 ps and 1.9 ps time constants, and finally a very fast (≪1 ps) non-radiative electron–hole recombination which brings the system back to the ground state. Notably, we find that the electron transfer stage is governed by an ultrafast water rearrangement around photo-excited dots, pointing out the key role of solvent interactions in the photo-physics of these systems.

Introduction

Carbon nanodots (CDs) are a recent class of nanomaterials, which have received great attention in the broad world of nanoscience since their accidental discovery in 2004.1 The great interest in these systems may be mostly attributed to their fascinating photoluminescence,2 uncommon in C-based nanoscale materials, usually tunable throughout the visible range, and highly sensitive to the environment or to interactions with external agents. Moreover, CDs combine these remarkable fluorescent capabilities with an apparent lack of toxicity,3 high water solubility,4 and easy synthesis procedures.5

The use of CDs in nano-sensing applications has been intensively studied as one of their most interesting applications. CDs are highly responsive to the presence of metal ions in solution, and many studies have reported a variation (quenching or enhancement) of their luminescence in the presence of different types of ions.6–13 Depending on the surface structure of the CD, these interactions can be very selective and reversible. For instance, Zhang et al. reported an interaction between CDs and Fe3+ ions, and the consequent quenching of CD emission, already at nanomolar iron concentrations,9 while Zong et al. showed how the fluorescence of CDs is turned off when they come in contact with Cu2+ ions, and how it is turned back on by addition of L-cysteine, which detaches the ions from the dot surface.8 The most popular explanation for these quenching phenomena invokes an efficient electron transfer from CDs to metal ions or molecules, which hinders the radiative recombination of photo-generated excitons.14 Interestingly, some research studies have suggested that these CD–metal quenching interactions are influenced by the solvent,14 suggesting a role of solvation in the underlying photochemical interactions.
As a matter of fact, the ability of CDs to act as efficient photo-activated electron acceptors or donors is rather well-established and not limited to the interaction with transition metal ions. These photochemical properties of CDs are regarded as one of their most interesting hallmarks because of their impact in the design of several types of functional hybrid nanoscale systems. For instance, similar charge transfer dynamics are observed between CDs and metal complexes, or when CDs are adsorbed onto the semiconductor surface and may allow for their use as green substitutes of metal-complexes to harvest solar energy in dye-sensitized solar cells (DSSC), or to strongly enhance the photocatalytic activity of semiconductor nanoparticles such as TiO$_2$, Cu$_2$O, and Fe$_2$O$_3$. Understanding these photochemical interactions of CDs is of crucial importance to optimize potentially far-reaching applications, and may provide precious information on the very nature of CD electronic transitions. In fact, there are still several open questions about the emission process of CDs, especially with regard to the interplay between core- and surface-related electronic states. We recently proposed that the lowest-energy optical transitions of CDs involve an increase of the electronic charge on surface functional groups at the expense of nearby core atoms. This indicates a transition typified by a certain charge separation character. Because of this, the surface electron should be especially prompted to participate in charge transfer dynamics, possibly explaining the strong interactions of CDs with metal ions. Actually, charge transfer processes involving semiconductor quantum dots are often mediated by their surface groups.

We carried out a study aimed to thoroughly clarify the interactions between photo-excited CDs and metal ions in solution, using Cu$^{2+}$ as a model system. If electron transfer dynamics are implicated in these interactions, Cu$^{2+}$ should be a very good candidate to clarify them, considering its open-shell electronic configuration ([Ar]3d9), the fairly positive redox potential, and the fact that its absorption spectrum does not overlap with either the absorption or the emission bands of CDs. Since fluorescence quenching often occurs over an extremely short time scale (picoseconds or less), the use of femtosecond-time-resolved spectroscopy is mandatory to observe these events in real time. To date, studies of CDs with sub-picosecond optical spectroscopy are still rare.

In our study, we find that CD fluorescence is quenched by Cu$^{2+}$ ions through a combination of dynamic and static quenching mechanisms. While the former are due to collisional encounters related to the high concentration of ions, the latter arise from the formation of CD/Cu$^{2+}$ complexes, whereby our results suggest that a single Cu$^{2+}$ ion binding to the dot surface is enough to quench its emission. Interestingly, the static and dynamic quenching rates are affected by significant dot-to-dot variations related to the heterogeneity of the system, leading to photoselection effects. Most importantly, by resolving in time the photocycle of CD/ Cu$^{2+}$ complexes, our experiments unveil the ultrafast, characteristic mechanism and ultrafast time scale of fluorescence quenching events. The emissive electron–hole pair generated by photo-excitation is decoupled by a partial electron transfer towards the ion, followed by a remarkably fast (<1 ps) non-radiative electron–hole recombination, which concludes the photocycle. Furthermore, we demonstrate that the electron transfer is controlled by picosecond and sub-picosecond solvent rearrangements around the photo-excited site, progressively lowering the reaction barrier. In this sense, solvent molecules are a vital component of the photochemical behavior of CDs, rather than spectators.

Experimental section

Sample preparation and characterization

The synthesis of CDs was carried out by the microwave-induced hydrothermal decomposition of an aqueous solution of citric acid and urea, in a 1 : 1 weight ratio. Urea is added in the synthesis as a source of nitrogen doping in order to enhance the optical properties of the nanomaterial. The synthesis procedure and the successive characterization of these nanomaterials by high-resolution transmission electron microscopy, electron diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared absorption have been described in detail in a previous study. Briefly, these CDs are 3 nm sized carbon nitride nanocrystals, surface-functionalized with amide and carboxylic groups.

Steady-state and nanosecond time-resolved optical measurements

All the solutions measured here by steady-state optical techniques and time-resolved fluorescence were prepared by dissolving a 8 mg L$^{-1}$ concentration of CDs in milliQ water, together with different amounts of Cu(NO$_3$)$_2$, CuSO$_4$ or ZnSO$_4$ (Sigma-Aldrich). All measurements were carried out at room temperature. The absorption spectra were recorded by using a double beam spectrophotometer (JASCO V-560) in the 220–750 nm range in a 1 cm quartz cuvette. The emission spectra were recorded with a JASCO FP-6500 spectrofluorometer in a 1 cm cuvette and infrared absorption spectra were recorded on a N$_2$-purged, Bruker VERTEX-70 spectrophotometer, in transmission geometry. The measurements were performed at room temperature under nitrogen flux to eliminate the effect of residual water in the air. Samples were prepared by depositing drops of a CD + Cu(NO$_3$)$_2$ solution on a sapphire window and drying under vacuum. Time-resolved fluorescence measurements were performed by using a tunable laser system consisting of an optical parametric oscillator pumped by a Q-switched Nd:YAG laser (5 ns pulses at a 10 Hz repetition rate). Fluorescence spectra were recorded on an intensified charge coupled device (CCD) camera, integrating the signal within temporal windows of 0.5 ns duration after variable delays from the laser pulse. The obtained decay kinetics of the photoluminescence were least-squares fitted to exponential functions convoluted with a Gaussian instrumental response function (IRF) with a 5 ns full width at half maximum.
(FWHM), determined by the laser temporal profile. The accuracy on the time constant of the decays is about 0.2 ns.

Femtosecond-resolved transient absorption

The broadband femtosecond transient absorption (TA) measurements on the solution of pure CDs in water and ethanol, and on CDs + 100 mM Cu²⁺ in water were based on a 1 kHz Ti:sapphire regenerative amplifier system which generates 90 fs pulses at 800 nm with 0.8 mJ pulse energy. The beam is split to generate pump and probe beam paths. The pump passes through an ultrathin BBO (Beta Barium Borate) crystal where it is frequency doubled to produce the excitation at 400 nm, which is then chopped at a repetition rate of 500 Hz, and synchronized with a regenerative amplifier output. For probing, a referenced broadband detection scheme is adopted. A white light pulse (350 to 700 nm) is generated by focusing a 400 nm beam which is then chopped at 500 Hz, whereas the probe passes through an ultrathin BBO crystal in order to create a 2 mm quartz cuvette containing D₂O, generating a broadband pulse extending from 400 to 700 nm. After overlapping with the pump within the sample, the probe beam is dispersed on the detector through a Brewster-angle silica prism and the measurement wavelength is selected by a variable slit, which guarantees a spectral resolution of 3 nm at 550 nm. The detector used for the single-wavelength measurements is a photomultiplier connected to a lock-in amplifier. The latter, triggered by the chopper, allows extracting the TA signal as a component of the probe signal locked to the chopper frequency. A typical signal is obtained by scanning 10 times the pump/probe delay, and using an integration time of 1.5 s per point. The obtained time traces were least-squares fitted to multi-exponential functions convoluted with the Gaussian IRF of the setup, having a FWHM = 120 fs. For the broadband measurement performed in this setup, the detector is the multi-camera system (Glaz Linescan-I) as illustrated above.

The broadband and the single-wavelength measurements are collected at room temperature under the same conditions. The solutions were prepared by adding the same amount of CDs (final concentration of about 1.2 g L⁻¹) and Cu²⁺ ions, and were continuously circulated in a 0.2 mm thick flow cell, in order to have an absorbance value of 0.3 OD at 400 nm. The measurements were performed in the linear regime with an energy of about 100 nJ per pulse and we checked that the signal was not concentration dependent. All measurements were carried out under, so-called, magic angle detection conditions, such that they are not affected by rotational diffusion or depolarization dynamics. The data presented in the paper were subjected to standard correction procedures which eliminate the effects of cross-phase modulation (XPM) and group velocity dispersion (GVD).

Results and discussion

Effect of metal ions on CD fluorescence: static and dynamic quenching

CDs were synthesized by a single-step procedure based on microwave-induced decomposition of citric acid and urea. As reported in greater detail in ref. 29, the core of these CDs has a carbon nitride crystalline structure and their surface shell is rich in carboxylic and amide groups. We show in Fig. 1a their electronic absorption spectrum, peaking around 400 nm (purple spectrum). We dispersed a given amount of dots in water, together with different amounts of Cu²⁺ ions, and studied how their optical properties change with the increase of ion concentration. Fig. 1b displays the steady state emission spectra excited at 440 nm of an aqueous solution of CDs (8 mg L⁻¹) and variable concentrations of copper nitrate. It is evident that the photoluminescence is quenched by the ions, similar to previous reports in the literature. Since effects in Fig. 1 are essentially independent of the counter ion (Fig. S1 in the ESI†), quenching can be safely attributed to the interaction with aqueous Cu²⁺. In the inset of Fig. 1b, we report how the luminescence intensity decreases with increasing [Cu²⁺]: appreciable variations of the emission intensity are observed at concentrations as low as 2 μM, where we detect a ΔI/I₀ ≈ 10% reduction, and a very marked quenching is observed when the copper concentration reaches the millimolar range, with a ΔI/I₀ ≈ 50% loss of the luminescence efficiency recorded at [Cu²⁺] = 2 mM. We also see a blue shift of the band from 525 nm down to 512 nm, measured at [Cu²⁺] = 500 mM together with an intensity reduction of ΔI/I₀ ≈ 96%. We also investigated the effect of Cu²⁺ ions on the steady state absorption properties: as shown in Fig. 1a, the addition of metal ions causes an intensity reduction and a blue shift (>20 nm when [Cu²⁺] = 500 mM) of the absorption band at 400 nm.

We performed nanosecond time-resolved fluorescence measurements (Fig. 2 and Table 1), in order to disentangle...
static and dynamic quenching mechanisms. In Fig. 2a and b, we show the 2-dimensional (2D) time-wavelength plots of the fluorescence intensity of the bare CD solution and of bare CD + 50 mM copper ions excited at 440 nm, respectively. The photoluminescence decay kinetics at a fixed emission wavelength, such as those in Fig. 2c, are obtained by a vertical cut of the 2D-plot and the emission spectra at a fixed time are obtained by a horizontal cut of the same plot and then normalized, as shown in Fig. 2d. The decay kinetics of bare CDs are single-exponential, with a lifetime of $\tau_0 = 6.2$ ns, and displays no spectral evolution. We find that diffusion-controlled (i.e. dynamic) quenching comes into play only above a certain Cu^{2+} concentration, as revealed by a decrease of the lifetime: we detect the first deviations of the fluorescence kinetics at $[\text{Cu}^{2+}] = 20$ mM (green curve in Fig. 2c, $\tau_0 = 5.0$ ns), and the lifetimes continue to decrease at higher quencher concentrations down to <2.0 ns. In the presence of copper, at fixed concentrations, we also see a blue shift of the band occurs during the decay, as shown in Fig. 2d. In fact, the lifetime becomes slightly emission-dependent: as shown in Fig. S2,† the lifetimes of the emission band when $[\text{Cu}^{2+}] = 50$ mM span from 3 ns (emission wavelength 490 nm) to 4.6 ns (600 nm).

However, such a diffusion-controlled mechanism cannot explain the quenching observed at millimolar concentrations and lower, when the probability of collisions between diffusing Cu^{2+} and CDs during the excited-state lifetime is negligible. This is evident if we consider the significant quenching observed at extremely low concentrations: considering the typical bimolecular diffusion-limited reaction rates in water ($K \approx 10^{10}$ M$^{-1}$ s$^{-1}$),30 the expected quenching I/I_0 due to collisions can be roughly estimated as $(1 + \tau_0 K [\text{Cu}^{2+}])^{-1}$. For $[\text{Cu}^{2+}] = 2$ mM, this only gives $\Delta I/I_0 = 5 \times 10^{-5}$, several orders of magnitude less than what we observed ($\Delta I/I_0 \approx 10\%$, as in Fig. 1). In fact, as previously reported for other CDs,12 we find that the lifetime is unchanged ($\tau = 5.9$ ns, blue and light blue datasets in Fig. 2c) up to $[\text{Cu}^{2+}] = 4$ mM, although the emission intensity decreases twofold (as in Fig. 1b). Fundamentally, a decrease of the amplitude without shortening of the lifetime can only be explained by the presence of non-radiative channels affecting the excited state population on time scales much shorter than the time resolution. On these time scales, the mechanism cannot be diffusional and it points to a mechanism where copper ions are in interaction with the dots before and during photoexcitation.
Hence, the quenching is purely static, i.e. occurring without collisions, up to millimolar Cu$^{2+}$ concentrations: ground-state interactions between CDs and Cu$^{2+}$ ions lead to the formation of weakly or non-luminescent CD–Cu$^{2+}$ complexes. As observed in Fig. 1 and 2 for [Cu$^{2+}$] = 4 mM, in this regime the emission keeps the same lifetime and spectral characteristics, as expected for static quenching, because the observed steady-state fluorescence only arises from the remaining, uncomplexed dots. In contrast, both bare CDs and CD–Cu$^{2+}$ complexes contribute to the absorption spectrum, and changes are observed (Fig. 1a). The observed intensity reduction of the absorption band indicates a significant perturbation of the electronic wavefunction, clearly demonstrating the close proximity of Cu$^{2+}$ ions on the surface of CDs. The absorption blue shift possibly arises from electrostatic screening of Cu$^{2+}$ complexes, hampering solvent-induced stabilization, which usually red shifts CD transitions.31 Also a ground state stabilization effect is very likely: from the very fact that the formation of CD–Cu$^{2+}$ complexes occurs spontaneously, Cu$^{2+}$ atoms binding to the surface of the dots are expected to stabilize their ground-state energy, leading to a blue shift in the OA spectra. Another interesting piece of information that can be inferred from the absorption spectra is that the latter continue to evolve even above the onset (≈10 mM) of dynamic quenching, suggesting a continuous increase of static effects up to the largest quencher concentrations we explored. We use the equation $I/I_0 = (1 - f)/(\tau/\tau_0)$ to estimate the portions of CD population which undergo static (f) and dynamic (1 − f) quenching. At the maximum copper concentration ([Cu$^{2+}$] = 500 mM) we explored, $I/I_0 = 0.05$ and $\tau = 1.5$ ns, corresponding to $f \approx 80\%$, indicating that static quenching is always dominant.

Finally, from the inset of Fig. 1b, another interesting effect is that the quenching effect is spread across the entire concentration range we explored. The response to copper of the emission intensity is very broad both in the static and dynamic quenching concentration range. This behavior suggests a broad distribution of both the reaction rates, fluctuating from dot to dot. The distribution of the static quenching rate may arise from different surface structures of the dots corresponding to different association rate constants with Cu$^{2+}$ ions, while the distribution of the dynamic rate is probably due to different capture radii, linked to different sizes of the dots. Such a heterogeneous response of different CDs to Cu$^{2+}$ ions should give rise to photoselection effects, explaining both the blue shift of the steady-state fluorescence at high Cu$^{2+}$ concentrations in Fig. 1b (red-emitting dots have larger association constants and are the first to undergo static quenching) and the emission-dependence of the lifetime in Fig. S2† (red-emitting dots have larger capture radii for diffusing Cu$^{2+}$ ions, hence shorter lifetimes).

Sub-nanosecond fluorescence quenching induced by Cu$^{2+}$

The dependence of fluorescence quenching on the metal ion content and the mono-exponential ns decay at any concentration, definitively points to the involvement of picosecond or even sub-picosecond deactivation mechanisms. Therefore, we performed femtosecond transient absorption (TA) measurements on aqueous solutions of carbon nanodots with different contents of copper ions, excited by 90 fs pulses at 400 nm. We collected broadband TA measurements on an aqueous solution of bare CDs, and on a solution of CDs with [Cu$^{2+}$] = 100 mM. The data are shown as time-wavelength 2D-plots in Fig. 3a and b. The spectra at selected times, such as those in Fig. 3c and d, show three contributions to the TA signal: (i) a negative contribution around the pump wavelength, mostly due to ground state bleaching (GSB) associated with the depopulation of the ground state via photo-excitation, with the possible addition of a stimulated emission due to a fluorescence signal peaking at 420 nm; (ii) a strong stimulated emission (SE) at 520–550 nm, corresponding to an ordinary fluorescence signal except for its negative sign; and (iii) several positive excited state absorption (ESA) signals, at $\lambda < 400$ nm, $\lambda \sim 470$ nm, and $\lambda > 600$ nm, respectively, due to electronic transitions from the excited state towards higher excited states. We observe spectral evolution only in the first picoseconds, which mainly consists of a dynamical Stokes shift of the SE signal from 520 nm to 554 nm (Fig. S3†). Afterwards, no further dynamics are observed. As shown in Fig. 3b and d, the shape of the signal in the presence of Cu$^{2+}$ is almost the same as bare CDs. However, in the presence of Cu$^{2+}$, all the components of the signal undergo a decay over a time scale of a few picoseconds, which is not observed for bare CDs.

Table 1

<table>
<thead>
<tr>
<th>Concentration [Cu$^{2+}$] (mM)</th>
<th>Normalized integral of steady state emission</th>
<th>Fluorescence decay lifetime (ns)</th>
<th>TA decay amplitudes (mOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$r_1 = 0.21 \pm 0.05$ ps</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>6.2 ± 0.2</td>
<td>$A_1 = 2.00$</td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
<td>5.9 ± 0.2</td>
<td>1.60</td>
</tr>
<tr>
<td>20</td>
<td>0.28</td>
<td>5.0 ± 0.2</td>
<td>0.69</td>
</tr>
<tr>
<td>50</td>
<td>0.20</td>
<td>4.6 ± 0.2</td>
<td>0.77</td>
</tr>
<tr>
<td>100</td>
<td>0.13</td>
<td>3.0 ± 0.2</td>
<td>0.66</td>
</tr>
<tr>
<td>200</td>
<td>0.11</td>
<td>2.9 ± 0.2</td>
<td>0.30</td>
</tr>
<tr>
<td>500</td>
<td>0.04</td>
<td>1.5 ± 0.2</td>
<td>0.21</td>
</tr>
</tbody>
</table>

This journal is © The Royal Society of Chemistry 2017

Paper

Nanoscale

Published online 07 June 2017. Downloaded by ETH-Zurich on 14/05/2018 10:57:03.
Evidently, the main effect of metal ions is to alter the overall evolution, but with minimal effects on the spectral features of the TA bands, and single-wavelength kinetic traces can show the effect of metal-ions on the different spectral components. In order to study the effects of copper ions on the fluorescence, we recorded the SE signal in the single-wavelength detection mode to achieve a higher signal-to-noise ratio.

Time traces in Fig. 4 were collected at a wavelength of 550 nm close to the peak position of the SE after 10 ps (Fig. 3 and Fig. S3†), to monitor specifically contributions to the SE and thus excited-state relaxation of CDs. As shown in Fig. 4, the signal of bare dots undergoes a rise (i.e. it grows in absolute value) within few ps after photo-excitation. This rise is dominated by the ultrafast dynamical Stokes shift of the entire SE band, which actually peaks at 550 nm after a few ps (Fig. S3†). In the presence of Cu²⁺ we see a strong reduction of the SE, similar to as shown in Fig. 3c. In particular, we observe a decay component over a time scale of a few ps, becoming more and more evident with increasing ion concentration (Fig. 4b). We analyzed the single-wavelength kinetics at 550 nm by least-squares fitting all the traces in Fig. 4a with multi-exponential functions. We found that every trace can be reproduced by three different time components, τ_1, τ_2 and τ_3. Although the amplitudes associated with these three time scales depend on copper concentration, the time scales obtained by the fitting procedure show indeed slight variations across the different traces in Fig. 4a, and we discovered that all the traces can be simultaneously fitted by common time constants: their values, as obtained by the fit, are $\tau_1 = 0.21 \pm 0.05$ ps, $\tau_2 = 1.9 \pm 0.1$ ps, $\tau_3 \geq 1000$ ps, and their amplitudes A_i are reported in Table 1. As the SE signal is negative, a positive (negative) pre-exponential amplitude respectively indicates a rise (decay) of the absolute signal intensity over the corresponding time scale.

The τ_3 component can be identified with the nanosecond-lived fluorescence analyzed in Fig. 1 and 2, that is, the fluorescence surviving after all the ultrafast dynamics are completed: in fact, increasing [Cu²⁺] reduces its weight A_3 (see Table 1) similarly to the intensity decrease observed in the inset of Fig. 1b. Measurements on an extended delay range (Fig. S4†) confirm that there is no evolution on the tens and hundreds of picosecond range. This result underscores again that the picosecond (Fig. 4) and nanosecond (Fig. 2) fluorescence decays induced by addition of Cu²⁺ are well separated, and associated with different processes (static and dynamic quenching, respectively).
The most important information can be drawn, however, by examining the fastest τ_1 and τ_2 dynamics. For bare CDs, the SE signal probed at 550 nm undergoes a bi-exponential rise over two time scales of 0.21 ps and 1.9 ps (A_1 and A_2 positive). In agreement with the previous discussion, the rise is due to the observed dynamical Stokes shift of the SE band (Fig. S3†) caused by solvation dynamics, that is, the relaxation of water around a new electronic distribution impulsively produced by CD photo-excitation.32 In fact, we certainly expect a significant contribution by solvation dynamics, that is, the relaxation of water around the excited state and nanosecond methods, they actually yield a transient signal probed at 550 nm undergoes a bi-exponential rise over two time scales of 0.21 ps and 1.9 ps (Fig. 3). The ultrafast fluorescence of CDs in the presence of Cu2+ complexes is formed by the chemical interaction of ground-state CDs and Cu2+ ions, and their emission quenching is due to simple, one dot-one ion complexes. In fact, the coexistence of multiple species of the form CD–(Cu2+)n, with variable n, would lead to multiple time scales, dependent on the number of attached ions, and progressively showing up with increasing copper concentration. Furthermore, attributing these processes to solvation is further strengthened by TA data in Fig. S5† in which we compare the aqueous spectra with those recorded in ethanol at the same delays: in ethanol, having a lower polarity, the SE signal is blue shifted and the dynamical Stokes shift is smaller. Observing such a strong solvent-dependent effect also confirms that the electronic transition involves the surface, directly exposed and strongly influenced by the solvent. The solvation time scales of CDs have not been systematically investigated before. A previous study proposed extremely slow solvation at CD surfaces, extending up to the nanosecond scale.33 However, the present results show that CD solvation is actually more similar to that of small molecules or small inorganic nanoparticles,34 usually very fast and occurring on a few ps and sub-ps time scales.35 In this sense, the hydration layer around CDs is very different from other colloids such as proteins,36 whose hydration dynamics are significantly slowed down with respect to bulk water.

We discuss now the effect of copper on the dynamics of CDs. The addition of Cu2+ decreases the weight of the first rise ($\tau_1 = 0.21$ ps) and converts the $\tau_2 = 1.9$ ps rise into a decay, as seen from the change of sign of its amplitude A_2. The ultrafast decay τ_2 directly represents a real-time observation of diffusion-free, static quenching events, which we previously inferred by indirect means. Although the CD–Cu2+ complexes involved in these decays are seen as “non-emissive” by steady-state and nanosecond methods, they actually yield a transient fluorescence: in fact, the SE observed in the presence of Cu2+ is very close to bare CDs, except for the ultrafast decay (Fig. 3). Therefore, CD–Cu2+ fluorescence must be observed by ultrafast methods, since it gives essentially no contribution to steady state emission (its quantum yield is ≈ 1 ps/$\tau_R \leq 10^{-4}$, where $\tau_R \approx 30$ ns is the radiative lifetime of CDs).23 Although the amplitude A_1 of the fastest (0.21 ps) component never becomes negative, its trend can also be understood on the same grounds: A_1 becomes smaller with increasing [Cu2+] because the contribution of bare CDs (positive A_1, rise due to solvation) overlaps with the growing contribution of CD–Cu2+ complexes (negative A_1, decay). Overall, these data demonstrate that close-range CD–Cu2+ interactions activate two ultrafast decay channels of the fluorescence and, importantly, their time scales (0.21 ps and 1.9 ps) match those of CD surface solvation, or otherwise more than two time constants would be needed to reproduce data shown in Fig. 4. This coincidence is indeed unexpected and leads to presume a key role of solvation in the quenching process, discussed in detail in the last paragraph.

Finally, our data lead to some further, interesting considerations on the nature of CD/ion complexes involved in static quenching. In fact, the amplitude of the ultrafast fluorescence decay components increase with copper concentration, while the time constants of these decays are independent of it and are always 0.2 and 1.9 ps, as extracted from fitting the single-wavelength traces at 550 nm. This strongly suggests that the quenching dynamics are due to simple, one dot-one ion complexes. In fact, the coexistence of multiple species of the form CD–(Cu2+)n, with variable n, would lead to multiple time scales, dependent on the number of attached ions, and progressively showing up with increasing copper concentration. This important conclusion is also endorsed by the simple trend of the intensity quenching shown in the inset of Fig. 1b, where a significant intensity decrease is already observed from the lowest copper concentrations we explored. If the successive, multi-step, binding of several copper ions were needed to quench the luminescence, the observed trend would certainly be more complex, and would show an initial lag phase.

The quenching mechanism: solvent-driven electron transfer from CDs to metal ions

Based on the results reported so far, we conclude that stable CD–Cu2+ complexes are formed by the chemical interaction of ground-state CDs and Cu2+ ions, and their emission quenching likely involves a very efficient electron transfer (ET) towards Cu2+ ions. Other common mechanisms of fluorescence quenching appear very unlikely: in particular, both resonance- and Dexter-type energy transfer to the d–d absorption transition of aqueous Cu2+ ions around 800 nm should be extremely inefficient because the latter is forbidden and has no spectral overlap with CD emission at 520 nm (Fig. S6†). Besides, an exciton transfer from the CD to the binding ion would give rise to a characteristic ESA signal in the TA spectra due to the ion in the (d,d) excited state,37 which does not exist in the pump/probe spectra recorded here, conclusively ruling out this mechanism as a cause of fluorescence quenching. In order to confirm the role of ET, we studied the optical properties of a solution of CDs with two different amounts of zinc ions (Zn2+).

Because the electronic configuration of Zn2+ is [Ar]3d10, that is, a completely full 3d-shell, no ET is expected with these ions. As shown in Fig. 5, the presence of Zn2+ in a solution of CDs does not quench the photoluminescence; in contrast, it causes an increase of the quantum yield, a blue shift of the emission band (Fig. 5a) and an extension of the lifetime (Fig. 5b), in striking contrast to the effect induced by copper ions. On one hand, this result strongly supports the idea that quenching involves ET from the surface of photo-excited CDs to Cu2+ ions; on the other hand, the enhancement of the emission by Zn2+ is probably the effect of electrostatic screening.
provided by Zn$^{2+}$ ions on the negatively-charged surface of CDs (rich of COO– groups). This is expected to reduce the strong solvation effects on the CD surfaces, due to dielectric and H-bonding interactions with water that red shift CD emission and reduce their QYs.23 Through this mechanism, Zn-induced screening increases the HOMO/LUMO gap and provokes a blue shift of the band, accompanied by an increase of the lifetime and quantum yield of the transition. Additionally, the attached Zn$^{2+}$ may increase QY by limiting the geometrical rearrangement of the surface groups that provide non-radiative dissipation channels. In order to better understand the effect of Zn ions, we performed TA measurements on the solution of CDs with 30 mM Zn$^{2+}$. As shown in Fig. S7,† the pump/probe signal (Fig. S7a†) is very similar to the one observed in the solution of bare CDs and, in particular, the kinetics of the SE signal is practically the same (Fig. S7b†) in both solutions, underlining the absence of any SE decay in the presence of zinc ions. On the other hand, we noted, in the presence of Zn$^{2+}$, a smaller solvatochromic shift of the SE than in pure water (at $t > 10$ ps, the SE peaks at 556 nm for CDs in pure water and at 550 nm in the presence of Zn$^{2+}$) which confirms the screening effect discussed above and the following enhancement of the emission. Even in the case of Cu$^{2+}$, when an ET mechanism is viable, ultrafast fluorescence quenching may coexist with a screening mechanism similar to that induced by Zn$^{2+}$. Such an effect may contribute to the blue shift of the steady-state emission observed in Fig. 1b.

We recently developed a model for the lowest electronic transitions of these CDs,23 in which optical absorption has a certain core-to-surface charge transfer character: in particular, the transition causes an increase of electronic charge on surface carboxylic and amide groups, occupying their π empty orbitals, and leaves a hole which mostly resides on C$_3$N$_4$ core atoms in proximity of the surface. Both carboxylic and amide groups, common on the surface of many CDs, are potential anchoring sites of Cu$^{2+}$ ions, as reported in previous studies,8,11 and in particular N-containing groups, such as amide, seem to have a special binding affinity to Cu$^{2+}$. Considering this, and bearing in mind the possible role of the surface groups in the photocycle, we performed infrared (IR) absorption measurements on bare CDs and on a sample of CDs after addition of copper nitrate. We observe small, but appreciable variations in the region between 1550–1800 cm$^{-1}$, associated with the vibrations of amide and carboxylic surface groups,29 such as a blue shift of the amide II vibration (Fig. S8†). Although the observed changes are too complex to infer a simple binding pattern, IR data seem to confirm that these surface groups are involved in the formation of the complexes between Cu$^{2+}$ and CDs.

On these grounds, we expect a very close proximity of the photo-excited surface electron to the acceptor Cu$^{2+}$ ion, and a very strong coupling between the Franck–Condon (FC) state and the ET state, consistent with the ultrafast electron transfer we observe. However, the mixing between the FC and the ET states must be initially rather small, since the initial excited state is very close to the FC state of the bare CDs, as revealed by: (i) the fact that the shape of the SE at time zero is essentially unchanged in the presence of Cu$^{2+}$ (Fig. 3c and d); (ii) by the independence of the extrapolated SE signal amplitude at time zero from copper concentration (Fig. S9†), indicating that the nature of the initially excited state is independent of the presence of copper. The preservation of the FC state requires the existence of a defined barrier separating it from the ET state, as represented by the double-well potential energy surface in Fig. 6. On the other hand, our finding that ET occurs bi-exponentially on the same time scales (0.21 and 1.9 ps) that characterize aqueous solvation on bare CDs, rules out a direct through barrier transition from the FC to the ET states, since it would imply new decay components in the fitting procedure. Conversely, it speaks for an adiabatic ET process driven by a solvent rearrangement. Thus we propose

![Fig. 5](image1.png)

Fig. 5 (a) Emission spectra of a solution of bare CDs dissolved in water (purple) and with different concentrations of zinc and copper ions. (b) Normalized decay kinetics of the emission band of the solution of bare CDs (purple), of the solution with 30 mM Zn$^{2+}$ (red) and 20 mM Cu$^{2+}$ (orange).

![Fig. 6](image2.png)

Fig. 6 Model which represents the photo-cycle of CD–Cu$^{2+}$ complexes. After photoexcitation, an exciton is formed and the system is in an electronic state (FC) which relaxes due to solvent motions in 0.21 + 1.9 ps (red arrow) and causing a partial electron transfer from the CD to Cu$^{2+}$. The cycle is closed by an ultrafast non-radiative electron–hole recombination (<1 ps, green arrow).
that solvation progressively decreases the barrier between the FC state and the ET state (see Fig. 6) until the charge transfer is allowed and decouples the surface electron from the core hole, depopulating the emissive state. An adiabatic process implies a continuously-changing degree of mixing of the FC and ET states during the reaction, rather than an abrupt change of the electronic wavefunction. The idea of an adiabatic ET from CDs to Cu\(^{2+}\) is consistent with the small variation of the optical absorption spectra displayed in Fig. 1a: a small mixing between the FC state and the ET state, already existing at the time of photo-excitation, will increase the core-to-surface charge transfer character of the transition, and lower its oscillator strength, explaining the reduction of the absorption intensity.

After the initial photo-excitation, the solvent rearrangement drives the ET reaction towards Cu\(^{2+}\) to its completion. A deep involvement of solvent relaxation in this reaction is actually expected: in fact, the photo-induced change of the surface charge distribution, directly exposed to the solvent, is expected to trigger a dramatic solvent rearrangement, as observed in similar cases.\(^{18}\) The solvent reaction goes always in the direction to stabilize solvated charges. This implies that in its characteristic time scales, a solvent rearrangement will lower the barrier that keeps the charge on the photo-excited CD. This will also facilitate the first step of the ET process and trigger the progressive population of Cu\(^{2+}\) empty d-shell. In a cooperative way, this is expected to promote a further, strong solvent rearrangement as the reaction proceeds, because Cu\(^{2+}\) and Cu\(^{+}\) ions are characterized by completely different aqueous solvation shells (octahedral vs. tetrahedral).\(^{39}\) As a consequence of such a solvent-controlled mechanism, the time required for water rearrangement limits the efficiency of ET notwithstanding a strong coupling. In fact, in other cases ET can be much faster than observed here: Williams et al. reported a time scale well below 100 fs for the electron injection from photo-excited graphene quantum dots to TiO\(_2\) nanoparticles, in one of the few available studies on these systems.\(^{16}\)

The last step of the photocycle involves the transition of the CD–Cu\(^{2+}\) system back to the ground state. In this respect, Fig. 3 shows that the ultrafast SE decay is accompanied by the disappearance of all the other components of the TA signal. The decay of the GSB on the same time scale, in particular, implies an extremely fast repopulation of the ground state immediately after ET. To be consistent with the data, the ground-state recovery must be much faster than 1 ps (or otherwise the GSB would disappear later than the SE), and cannot be directly observed here because the time scale \(\tau_2\) is a bottleneck of the overall dynamics. The nature of this final step is ultimately a back electron transfer inducing a non-radiative electron–hole recombination. A sub-ps timescale suggests that the recombination is likely mediated by a sequence of inelastic electron–phonon scattering processes, usually allowing dissipation of large excess energies within 100s of femtoseconds.\(^{40}\) This process completes the photo-cycle and hinders steady-state emission from CD–Cu\(^{2+}\) complexes. The e\(^-\)h\(^+\) pair recombination time here observed is definitively faster than what is reported in other CD complexes with different oxidizing agents.\(^{41}\) An important effect of the chosen oxidizing agent is very probable but no specific study on this issue has been published yet. We can guess that the crucial step is the reinjection of the electron into the CD, while the dissipation of the Coulomb energy should be similar to what is here observed.

Finally, the fast reverse process suggests that the ET reaction is only partial, or otherwise the complete loss of the electron–hole overlap would render non-radiative recombination relatively inefficient. Indeed, within the model in Fig. 6, the final state produced by the ET reaction can be more realistically pictured as one where the electron has become completely delocalized between the surface group and the metal ion, rather than a state where the electron has been fully transferred from the surface carboxylic/amide group to the nearby Cu\(^{2+}\).

Conclusions

The combined use of steady-state, nanosecond-time-resolved and femtosecond optical spectroscopy provided a detailed picture of the dynamics responsible for CD fluorescence quenching by transition metal ions, from the femtosecond to the nanosecond time range. Most CDs are efficiently quenched by Cu\(^{2+}\) ions through the formation of stable CD–Cu\(^{2+}\) complexes, wherein an ion directly binds to the surface amide and/or carboxylic groups closely involved in the photoexcitation mechanism of the dot, and a minority of CDs are quenched by a collisional mechanism, reflecting variations of their nanosecond decay kinetics. In both cases, quenching involves an electron transfer mechanism, which is unviable for closed d-shell ions such as Zn\(^{2+}\). We additionally find that both static and dynamic quenching are affected by heterogeneity in the reaction rates, giving rise to photoselection effects. The study of CD–Cu\(^{2+}\) complexes by ultrafast spectroscopy reveals the characteristic time scales and mechanism of the ET dynamics, which turn out to be 0.21 ps and 1.9 ps. Our data strongly suggest that the ET process is only partial, and mostly controlled by a strong, and very fast, solvent rearrangement around the dot, initiated by photo-excitation, and driving a progressive reduction of the barrier for the ET reaction. The photocycle of CDs is completed by a fast, non-radiative recombination of the electron–hole pair, likely mediated by a cascade of inelastic electron–phonon scattering processes. Such a comprehensive view of electron transfer dynamics involving photoexcited carbon nanodots may help tailoring their properties to advance the design of photoactive, CD-based nanoscale materials.

Acknowledgements

We thank the LAMP group (http://www.unipa.it/lamp) at the University of Palermo for support and stimulating discussions. We thank Prof. Valeria Vetri for our use of optical spectroscopy.
facilities in her laboratory. We acknowledge financial support received under project “MedNETNA-Mediterranean Network for emerging nanomaterials” (P.O. F.E.S.R. 2007/2013 – line 4.1.2.A). Steady State photoluminescence and infrared measurements were carried out at the optical spectroscopy laboratory of ATeN center – CHAB, and single-wavelength TA measurements and some of the broadband TA measurements were carried out at the UFL laboratory of ATeN center – CHAB (http://www.atencenter.com). AC gratefully acknowledges the European Union (ERC Starting Grant 279599 - FunctionalDyna) and Swiss NSF through the NCCR MUST “Molecular Ultrafast Science and Technology” for the financial support.

References

17. X. Yan, X. Cui, B. Li and L.-S. Li, Nano Lett., 2010, 10, 1869–1873.