News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

Exciton-polariton Bose-Einstein condensation with a polymer at room temperature

Date Do, 21.05.2015 - Do, 21.05.2015
Time 11.15
Speaker Dr. Thilo Stöferle, IBM Research GmbH, Zurich Research Laboratory, Rüschlikon
Location Universität Bern, Institut für Angewandte Physik, Gebäude exakte Wissenschaften, Hörsaal B116, Sidlerstrasse 5, 3012 Bern
Program Integrated photonics is key for future data communication systems. A brief overview of the activities at IBM Research – Zurich will be given, with focus on our Quantum Photonics section, which investigates new microcavity structures and materials for enhanced light-matter interaction. In our experiments, we create exciton-polariton quasiparticles by exciting optically a microcavity filled with a ladder-type conjugated polymer in the strong coupling regime. At room temperature thermalization of these quasi-particles occurs while it is suppressed at low temperature because of a relaxation bottleneck. Above a certain excitation threshold with incoherent off-resonant picosecond laser pulses, we observe the emergence of non-equilibrium Bose-Einstein condensation in the lower polariton branch. This is evidenced by several distinct features such as a blue-shifted emission peak at zero in-plane momentum, accompanied by a nonlinear increase in the emission intensity and a sudden drop of the linewidth. Furthermore, the emission becomes polarized and the emission dynamics is drastically shortened. Spatially-resolved measurements with a Michelson interferometer show a macroscopic phase relation over almost the whole spot, and the fringe pattern exhibits non-flat phase fronts and fork-like dislocations, indicating a large number of vortices and excitations. Our approach demonstrates a radically simplified route to Bose- Einstein condensation physics at ambient conditions with easy-to-process non-crystalline materials.
Download (75 KB)
(75 KB)
Link www.iap.unibe.ch
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation