A quantum memory for twisted photons
Date | Fr, 27.02.2015 | |
Time | 11.00 | |
Speaker | Prof. Elisabeth Giacobino, Equipe Optique Quantique, Laboratoire Kastler Brossel, Paris | |
Location | Auditoire Stükelberg, Ecole de Physique (Quai Ernest-Ansermet, 24 - 1211 Genève) | |
Program | A quantum memory relies on an efficient coupling between light and matter, in order to achieve reversible mapping of quantum photonic information in and out of the material system. Our system involves the transfer of quantum information from light to atoms (writing) and back from atoms to light (retrieval), using electromagnetically induced transparency (EIT) in three‐level transitions in a cold cesium atomic ensemble. With this set‐up we have shown efficient storage of pulses carrying orbital angular momentum (OAM) at the single photon level. Laguerre‐Gauss LG+1 and LG‐1 modes were imprinted on the signal pulse, using a spatial light modulator. Then superpositions of LG modes, i.e. Hermite‐Gauss modes, were stored and retrieved. A full memory characterization (process tomography) over the Bloch sphere was performed and allowed us to demonstrate quantum fidelity. We thus demonstrated a quantum memory for orbital angular momentum photonic qubits. Single photons carrying OAM are promising for the implementation of qubits and qudits since OAM constitutes a quantized and infinite space. Interfacing them with quantum memories opens the way to their use in quantum networks. |
|
Download | Abstract Giacobino 02 2015 (60 KB) | |
Link | Jean-Pierre Wolf |