News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

A mechanical sensor to study movement at the nanoscale

Date Do, 26.09.2013 - Do, 26.09.2013
Time 10.15
Speaker Giovanni Longo, Laboratory of the Physics of Living Matter LPMV, EPFL, Lausanne
Location Universität Bern, Institut für Angewandte Physik, Gebäude exakte Wissenschaften, Hörsaal B116, Sidlerstrasse 5, 3012 Bern
Program The importance of the characterization of movement in biological samples ranges from the fields of biology and microbiology to pharmaceuticals and drug development. For instance, the movement of living systems can deliver useful information regarding the metabolism of the specimen under investigation and can be used to define their response to external stimuli. In this presentation I will show how nanomechanical sensors can be used to characterize the nano-sized fluctuations of biologically-interesting specimens. I will discuss the metabolism-related movements of different bacterial species, of yeasts and fungi and of plant and mammalian cells when exposed to various external stimuli. For instance I will show how bacteria react to antibiotics and how nanomechanical sensors can be used as extremely fast tools (minutes, compared to hours or days) to characterize bacterial resistances. Furthermore I will discuss how this system can be applied to the study of conformational changes in proteins and protein complexes. These studies have defined how this new diagnostic tool can be used to characterize biological samples and how this information can be used to understand better their metabolic pathways. The speed and sensitivity of the technique will have a massive impact, with applications in general and molecular biology, microbiology, drug development and medicine. Its versatility allows also foreseeing its possible future use to identify and characterize life in hostile environments.
Download (75 KB)
(75 KB)
Link www.iap.unibe.ch
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation