Program |
Since the very first experiment on soft X-ray laser in the early 70’s, these lasers attracted a lot of interests for applications. The short wavelength opens up the possibility of getting new insight on matter by performing high-resolution images. However, contrary to most lasers, and despite many attempts, soft X-ray lasers were not demonstrating coherent beam for very long time. Also, at small spatial-scale matter tends to evolve very quickly requiring most often to use sub-picosecond flash of X-rays for catching a frozen picture. However, for decades, soft X-ray laser were blocked to pulse duration above several picoseconds. Since 2001, we are working both theoretically and experimentally in order to achieve the next generation of soft X-ray lasers using a laser-created plasma as amplifier. Our goal is to generate fully coherent, femtosecond soft X-ray lasers able to drive the most exciting and complex applications. From our first concept, to the first experiment and the last numerical studies, we discover that seeding soft X-ray lasers opens an outstanding sight inside atomic and plasma physics. Finally, we will expose a detailed design of a possible second generation soft X-ray laser able to produce the most intense beam worldwide, about 10,000 times more intense than best previous soft X-ray lasers. |