News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Date Do, 28.04.2016 - Do, 28.04.2016
Time 11.00
Speaker Robert Boyd, Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa and on the Faculty at the University of Rochester
Location GRAND AMPHITHEATRE, ECOLE DE PHYSIQUE 24 QUAI ANSERMET 1205 GENEVE
Program This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light. We are also interested in studying the properties of structured light fields. These structured light beams have recently been shown to possess exotic properties of their own, such as vacuum propagation velocities differing from the light velocity c for plane waves. These beams can also be tailored in such a way that they carry orbital angular momentum, which can be used to apply a torque to mechanical objects and as a carrier of information in a classical and quantum telecommunication system. Light can carry angular momentum both by means of its spin angular momentum (as manifested for example in circular polarization) and by means of its orbital angular momentum (OAM), whose origin is a helical structure of its wavefront. The orbital angular momentum of light has recently been recognized to constitute a crucial attribute for many photonic technologies, including the trapping and manipulation of small particles and for multiplexing in optical telecommunication. In this presentation we review some of the fundamental properties of OAM including its quantum features such as entanglement. We then go on to describe a secure telecommunication system in which information is encoded in OAM, and which can carry more than one bit of information per photon.
Download (75 KB)
(75 KB)
Link Robert Boyd
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation