Forthcoming Events

30.08.2020 - 04.09.2020, Online (Europe)


New scientific highlights- from MUST researchers at PSI
Promotion to full professorcongratulations to Steve Johnson!
The Laser at 60: Ursula KellerOPN interviewed OSA Fellows
Former EPFL PhD student Edoardo Baldini wins the 2020 ACS PHYS Division Young Investigator Awards
New scientific highlights- by MUST PIs Banerji, Chergui and Wolf
Prix de l'innovation AGROVINA 2020- for Agrolase: detecting spores of pathogens in real time
Ruth Signorell receives the Humboldt Prize- awarded in recognition of outstanding achievements in research and teaching
New scientific highlights- by MUST PIs Keller, Chergui, Richardson / Vanicek, Wörner, Castiglioni / Osterwalder / Hengsberger / van Bokhoven
Ursula Keller wins the SPIE 2020 Gold Medal- awarded in recognition of outstanding engineering or scientific accomplishments
Nobel Prize winner Gerard Mourou - Physics Colloquium 11.12.19: Passion Extreme Light

Manfred Fiebig

April 2016

Prof. Manfred Fiebig was awarded a 2016 ERC Advanced Grant for the project: In-Situ Second Harmonic Generation for Emergent Electronics in Transition-Metal Oxides.

(from the ETH D-MATL news item)

An ERC Advanced Grant was awarded to the "Laboratory of Multifunctional Ferroic Materials" of Prof. Manfred Fiebig for the development of a new technique for monitoring the emergence of ordered states in thin-film heterostructures in real-time, while they are growing. A laser-optical process is the basis of this approach.

Since transition-metal oxide heterostructures can be grown by pulsed-laser deposition with semiconductor-like accuracy, fascinating phases and functionalities derived from such accurately architecture samples have been discovered. Examples are conducting, ferromagnetic or even superconducting interfaces between otherwise insulating materials. So far, electron diffraction is the only widely established technique for monitoring multilayers in-situ, while they are growing, and provide direct feedback on how to optimize the growth process. The ERC Advanced Grant will allow the Laboratory of Multifunctional Ferroic Materials of Prof. Manfred Fiebig and Dr. Morgan Trassin to introduce nonlinear laser-optical processes as new in-situ technique that allows to track spin-and charge-related phenomena such as ferroelectricity, insulator-metal transitions, domain coupling effects or interface states in a non-invasive way throughout the deposition process. This new, property-monitoring tool in thin-film growth has an immense potential to uncover new states of matter and functionalities. A particular focus will be on the simultaneous emergence of magnetic and electric order in so-called "multiferroics", a long-standing topic in the group.

NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation