Forthcoming Events

11.07.2022 - 15.07.2022, Celeste Hotel, on UCF main campus, Orlando, Florida
05.09.2022 - 09.09.2022, Iseolago hotel, Iseo, Italy.


MUST2022 Conference- succesfully concluded
New scientific highlights- by MUST PIs Chergui and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules
#NCCRWomen- NCCR MUST celebrates 50 years women’s right to vote in Switzerland
Kick-Off dynaMENT Mentoring for Women in Natural Sciences- with Ursula Keller as plenary speaker

Manfred Fiebig

April 2016

Prof. Manfred Fiebig was awarded a 2016 ERC Advanced Grant for the project: In-Situ Second Harmonic Generation for Emergent Electronics in Transition-Metal Oxides.

(from the ETH D-MATL news item)

An ERC Advanced Grant was awarded to the "Laboratory of Multifunctional Ferroic Materials" of Prof. Manfred Fiebig for the development of a new technique for monitoring the emergence of ordered states in thin-film heterostructures in real-time, while they are growing. A laser-optical process is the basis of this approach.

Since transition-metal oxide heterostructures can be grown by pulsed-laser deposition with semiconductor-like accuracy, fascinating phases and functionalities derived from such accurately architecture samples have been discovered. Examples are conducting, ferromagnetic or even superconducting interfaces between otherwise insulating materials. So far, electron diffraction is the only widely established technique for monitoring multilayers in-situ, while they are growing, and provide direct feedback on how to optimize the growth process. The ERC Advanced Grant will allow the Laboratory of Multifunctional Ferroic Materials of Prof. Manfred Fiebig and Dr. Morgan Trassin to introduce nonlinear laser-optical processes as new in-situ technique that allows to track spin-and charge-related phenomena such as ferroelectricity, insulator-metal transitions, domain coupling effects or interface states in a non-invasive way throughout the deposition process. This new, property-monitoring tool in thin-film growth has an immense potential to uncover new states of matter and functionalities. A particular focus will be on the simultaneous emergence of magnetic and electric order in so-called "multiferroics", a long-standing topic in the group.

NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail | +41 44 633 36 02
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation